Z. Quan, A. Wu, M. Keefe, X. Qin, J. Yu, J. Suhr, J.-H. Byun, B.-S. Kim, and T.-W. Chou, Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges, Mater. Today, 2015, 18(9), p 503–512
CAS
Google Scholar
S.E. Zeltmann, K.A. Prakash, M. Doddamani, and N. Gupta, Prediction of Modulus at Various Strain Rates from Dynamic Mechanical Analysis Data for Polymer Matrix Composites, Compos. B Eng., 2017, 120, p 27–34
CAS
Google Scholar
G. Papanicolaou, N. Anifantis, L. Keppas, and T.V. Kosmidou, Stress Analysis of Short Fiber-Reinforced Polymers Incorporating a Hybrid Interphase Region, Compos. Interfaces, 2007, 14(2), p 131–152
Google Scholar
R. Matsuzaki, M. Ueda, M. Namiki, T.-K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano, Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation, Sci. Rep., 2016, 6, p 23058
Google Scholar
D.W.Y. Wong, H. Zhang, E. Bilotti, and T. Peijs, Interlaminar Toughening of Woven Fabric Carbon/Epoxy Composite Laminates Using Hybrid Aramid/Phenoxy Interleaves, Compos. A Appl. Sci. Manuf., 2017, 101, p 151–159
CAS
Google Scholar
K.C. Warren, R.A. Lopez-Anido, and J. Goering, Experimental Investigation of Three-Dimensional Woven Composites, Compos. A Appl. Sci. Manuf., 2015, 73, p 242–259
CAS
Google Scholar
S. Mortazavian and A. Fatemi, Effects of Fiber Orientation and Anisotropy on Tensile Strength and Elastic Modulus of Short Fiber Reinforced Polymer Composites, Compos. B Eng., 2015, 72, p 116–129
CAS
Google Scholar
E.J. Barbero, Introduction to Composite Materials Design, CRC Press, Boca Raton, 2017
Google Scholar
S.H. Huang, P. Liu, A. Mokasdar, and L. Hou, Additive Manufacturing and Its Societal Impact: A Literature Review, Int. J. Adv. Manuf. Technol., 2013, 67, p 1–13
Google Scholar
M. Vaezi, H. Seitz, and S. Yang, A Review on 3D Micro-Additive Manufacturing Technologies, Int. J. Adv. Manuf. Technol., 2013, 67(5–8), p 1721–1754
Google Scholar
D. Rigotti, A. Dorigato, and A. Pegoretti, 3D Printable Thermoplastic Polyurethane Blends with Thermal Energy Storage/Release Capabilities, Mater. Today Commun., 2018, 15, p 228–235
CAS
Google Scholar
A. Cataldi, D. Rigotti, V.D.H. Nguyen, and A. Pegoretti, Polyvinyl Alcohol Reinforced with Crystalline Nanocellulose for 3D Printing Application, Mater. Today Commun., 2018, 15, p 236–244
CAS
Google Scholar
F. Valentini, A. Dorigato, D. Rigotti, and A. Pegoretti, Polyhydroxyalkanoates/Fibrillated Nanocellulose Composites for Additive Manufacturing, J. Polym. Environ., 2019, 27(6), p 1333–1341
CAS
Google Scholar
V.K. Srivastava, A Review on Advances in Rapid Prototype 3D Printing of Multi-Functional Applications, Sci. Technol, 2017, 7, p 4–24
Google Scholar
I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies, Springer, Berlin, 2010
Google Scholar
F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling, Compos. B Eng., 2015, 80, p 369–378
CAS
Google Scholar
J.Y. Lee, J. An, and C.K. Chua, Fundamentals and Applications of 3D Printing for Novel Materials, Appl. Mater. Today, 2017, 7, p 120–133
Google Scholar
A.P. West, S.P. Sambu, and D.W. Rosen, A Process Planning Method for Improving Build Performance in Stereolithography, Comput. Aided Des., 2001, 33(1), p 65–79
Google Scholar
J.P. Kruth, X. Wang, T. Laoui, and L. Froyen, Lasers and Materials in Selective Laser Sintering, Assem. Autom., 2003, 23(4), p 357–371
Google Scholar
P. Dudek, FDM 3D Printing Technology in Manufacturing Composite Elements, Arch. Metall. Mater., 2013, 58(4), p 1415–1418
CAS
Google Scholar
M. Prechtl, A. Otto, and M. Geiger, Rapid tooling by laminated object manufacturing of metal foil, Advanced Materials Research, Trans Tech Publ, Switzerland, 2005, p 303–312
Google Scholar
G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites Via Liquid Deposition Modeling, Compos. A Appl. Sci. Manuf., 2015, 76, p 110–114
CAS
Google Scholar
K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, and H. Friedrich, 3D Printing of CNT- and Graphene-Based Conductive Polymer Nanocomposites by Fused Deposition Modeling, Appl. Mater. Today, 2017, 9, p 21–28
Google Scholar
S. Dul, L. Fambri, and A. Pegoretti, Fused Deposition Modelling with ABS-Graphene Nanocomposites, Compos. A Appl. Sci. Manuf., 2016, 85, p 181–191
CAS
Google Scholar
A. Dorigato, V. Moretti, S. Dul, S. Unterberger, and A. Pegoretti, Electrically Conductive Nanocomposites for Fused Deposition Modelling, Synth. Met., 2017, 226, p 7–14
CAS
Google Scholar
D. Rigotti, L. Fambri, and A. Pegoretti, Polyvinyl Alcohol Reinforced with Carbon Nanotubes for Fused Deposition Modeling, J. Reinf. Plast. Compos., 2018, 37(10), p 716–727
CAS
Google Scholar
Z. Wu, W. Liu, H. Wu, R. Huang, R. He, Q. Jiang, Y. Chen, X. Ji, Z. Tian, and S. Wu, Research into the Mechanical Properties, Sintering Mechanism and Microstructure Evolution of Al2O3-ZrO2 Composites Fabricated by a Stereolithography-Based 3D Printing Method, Mater. Chem. Phys., 2018, 207, p 1–10
CAS
Google Scholar
F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Y. Wang, J.M. Janurudin, S.C. Speller, C.R.M. Grovenor, and P.S. Grant, Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites, Sci. Rep., 2016, 6, p 22714
CAS
Google Scholar
J.J. Martin, B.E. Fiore, and R.M. Erb, Designing Bioinspired Composite Reinforcement Architectures Via 3D Magnetic Printing, Nat. Commun., 2015, 6, p 8641
Google Scholar
T. Monaghan, A.J. Capel, S.D. Christie, R.A. Harris, and R.J. Friel, Solid-State Additive Manufacturing for Metallized Optical Fiber Integration, Compos. Part A Appl. Sci. Manuf., 2015, 76(3), p 181–193
CAS
Google Scholar
B.G. Compton and J.A. Lewis, 3D-Printing of Lightweight Cellular Composites, Adv. Mater., 2014, 26(34), p 5930–5935
CAS
Google Scholar
S.E. Bakarich, R. Gorkin, III, M. in het Panhuis, and G.M. Spinks, Three-Dimensional Printing Fiber Reinforced Hydrogel Composites, ACS Appl. Mater. Interfaces, 2014, 6(18), p 15998–16006
CAS
Google Scholar
E.D. Yildirim, X. Yin, K. Nair, and W. Sun, Fabrication, Characterization, and Biocompatibility of Single-Walled Carbon Nanotube-Reinforced Alginate Composite Scaffolds Manufactured Using Freeform Fabrication Technique, J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87(2), p 406–414
Google Scholar
M. Saari, B. Cox, E. Richer, P.S. Krueger, and A.L. Cohen, Fiber Encapsulation Additive Manufacturing: An Enabling Technology for 3D Printing of Electromechanical Devices and Robotic Components, 3D Print. Addit. Manuf., 2015, 2(1), p 32–39
Google Scholar
L.S. Dimas, G.H. Bratzel, I. Eylon, and M.J. Buehler, Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing, Adv. Funct. Mater., 2013, 23(36), p 4629–4638
CAS
Google Scholar
L. Li, J. Wang, P. Lin, and H. Liu, Microstructure and Mechanical properties of Functionally Graded TiCp/Ti6Al4V Composite Fabricated by Laser Melting Deposition, Ceram. Int., 2017, 43(18), p 16638–16651
CAS
Google Scholar
M. Knupfer, Electronic Properties of Carbon Nanostructures, Surf. Sci. Rep., 2001, 42(1), p 1–74
CAS
Google Scholar
A.V. Eletskii, Mechanical Properties of Carbon Nanostructures and Related Materials, Phys. Usp., 2007, 50(3), p 225–261
CAS
Google Scholar
A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10(8), p 569–581
CAS
Google Scholar
S.M. O’Flaherty, R. Murphy, S.V. Hold, M. Cadek, J.N. Coleman, and W.J. Blau, Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions, J. Phys. Chem. B, 2003, 107(4), p 958–964
Google Scholar
A. Züttel, C. Nützenadel, P. Sudan, P. Mauron, C. Emmenegger, S. Rentsch, L. Schlapbach, A. Weidenkaff, and T. Kiyobayashi, Hydrogen Sorption by Carbon Nanotubes and Other Carbon Nanostructures, J. Alloys Compd., 2002, 330, p 676–682
Google Scholar
F. Lopez-Urias, J. Rodriguez-Manzo, M. Terrones, and H. Terrones, Magnetic Properties of Carbon Nanostructures, Int. J. Nanotechnol., 2007, 4(6), p 651–666
CAS
Google Scholar
K. Fu, Y. Yao, J. Dai, and L. Hu, Progress in 3D Printing of Carbon Materials for Energy-Related Applications, Adv. Mater., 2017, 29(9), p 1603486
Google Scholar
J.J. Restrepo and H.A. Colorado, Additive Manufacturing of Epoxy Resin Matrix Reinforced with Magnetic Particles, TMS Annual Meeting & Exhibition, Springer, Berlin, 2018, p 619–624
Google Scholar
L. Kuentz, A. Salem, M. Singh, M. Halbig, and J. Salem, Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements, Proc. 40th International Conference and Expo on Advanced Ceramic and Composites, Datona Beach, Florida, USA, January 24, 2016, I.D. No.
20160010284
Z. Liu, J. Zhan, M. Fard, and J.L. Davy, Acoustic Properties of a Porous Polycarbonate Material Produced by Additive Manufacturing, Mater. Lett., 2016, 181, p 296–299
CAS
Google Scholar
J. Bai, S. Yuan, F. Shen, B. Zhang, C.K. Chua, K. Zhou, and J. Wei, Toughening of Polyamide 11 with Carbon Nanotubes for Additive Manufacturing, Virt. Phys. Prototyp., 2017, 12(3), p 235–240
Google Scholar
A. Ambrosi and M. Pumera, 3D-Printing Technologies for Electrochemical Applications, Chem. Soc. Rev., 2016, 45(10), p 2740–2755
CAS
Google Scholar
I. Hanzlicek, M. Pentek, Computational Modeling of Stereolithography, IEEE GSC, 2014
Q. Mu, C.K. Dunn, L. Wang, M.L. Dunn, H.J. Qi, and T.J.S.M. Wang, Structures, Thermal Cure Effects on Electromechanical Properties of Conductive Wires by Direct Ink Write for 4D Printing and Soft Machines, Smart Mater. Struct., 2017, 26(4), p 045008
Google Scholar
K.H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl, Multi-Physical Simulation of Selective Laser Melting, Met. Powder Rep., 2017, 72(5), p 331–338
Google Scholar
A. Boschetto and L. Bottini, Accuracy Prediction in Fused Deposition Modeling, Int. J. Adv. Manuf. Technol., 2014, 73(5–8), p 913–928
Google Scholar
B.N. Turner, R. Strong, and S.A. Gold, A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling, Rapid Prototyp. J., 2014, 20(3), p 192–204
Google Scholar
X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos. B Eng., 2017, 110, p 442–458
CAS
Google Scholar
P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Compos. Struct., 2017, 182, p 36–53
Google Scholar
U. Scheithauer, A. Bergner, E. Schwarzer, H.-J. Richter, and T. Moritz, Studies on Thermoplastic 3D Printing of Steel-Zirconia Composites, J. Mater. Res., 2014, 29(17), p 1931–1940
CAS
Google Scholar
X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. A Appl. Sci. Manuf., 2016, 88, p 198–205
CAS
Google Scholar
X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, 3D Printable Graphene Composite, Sci. Rep., 2015, 5, p 11181
Google Scholar
S. Dul, L. Fambri, and A. Pegoretti, Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites, Nanomaterials, 2018, 8(1), p 49
Google Scholar
K. Prashantha and F. Roger, Multifunctional Properties of 3D Printed Poly(Lactic Acid)/Graphene Nanocomposites by Fused Deposition Modeling, J. Macromol. Sci. Part A, 2017, 54(1), p 24–29
CAS
Google Scholar
S.C. Partain, Fused Deposition Modeling with Localized Pre-deposition Heating Using Forced Air, Montana State University-Bozeman, College of Engineering, Bozeman, 2007
Google Scholar
C.B. Sweeney, B.A. Lackey, M.J. Pospisil, T.C. Achee, V.K. Hicks, A.G. Moran, B.R. Teipel, M.A. Saed, and M.J. Green, Welding of 3D-Printed Carbon Nanotube-Polymer Composites by Locally Induced Microwave Heating, Sci. Adv., 2017, 3(6), p e1700262
Google Scholar
F. Ning, W. Cong, Y. Hu, and H. Wang, Additive Manufacturing of Carbon Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: Effects of Process Parameters on Tensile Properties, J. Compos. Mater., 2017, 51(4), p 451–462
CAS
Google Scholar
H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, and S. Ozcan, Highly Oriented Carbon Fiber–Polymer Composites Via Additive Manufacturing, Compos. Sci. Technol., 2014, 105, p 144–150
CAS
Google Scholar
W. Hao, Y. Liu, H. Zhou, H. Chen, and D. Fang, Preparation and Characterization of 3D Printed Continuous Carbon Fiber Reinforced Thermosetting Composites, Polym. Test., 2018, 65, p 29–34
CAS
Google Scholar
K. Chockalingam, N. Jawahar, K. Ramanathan, and P. Banerjee, Optimization of Stereolithography Process Parameters for Part Strength Using Design of Experiments, Int. J. Adv. Manuf. Technol., 2006, 29(1–2), p 79–88
Google Scholar
H.K. Park, M. Shin, B. Kim, J.W. Park, and H. Lee, A Visible Light-Curable Yet Visible Wavelength-Transparent Resin for Stereolithography 3D Printing, NPG Asia Mater., 2018, 10, p 82–89
CAS
Google Scholar
F.P.W. Melchels, J. Feijen, and D.W. Grijpma, A Review on Stereolithography and Its Applications in Biomedical Engineering, Biomaterials, 2010, 31(24), p 6121–6130
CAS
Google Scholar
U. Kalsoom, A. Peristyy, P. Nesterenko, and B. Paull, A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices, RSC Adv., 2016, 6(44), p 38140–38147
CAS
Google Scholar
A. Chiappone, I. Roppolo, E. Naretto, E. Fantino, F. Calignano, M. Sangermano, and F. Pirri, Study of Graphene Oxide-Based 3D Printable Composites: Effect of the In Situ Reduction, Compos. B Eng., 2017, 124, p 9–15
CAS
Google Scholar
J. Hector Sandoval and R.B. Wicker, Functionalizing Stereolithography Resins: Effects of Dispersed Multi-walled Carbon Nanotubes on Physical Properties, Rapid Prototyp. J., 2006, 12(5), p 292–303
Google Scholar
J.H. Sandoval, K.F. Soto, L.E. Murr, and R.B. Wicker, Nanotailoring Photocrosslinkable Epoxy Resins with Multi-walled Carbon Nanotubes for Stereolithography Layered Manufacturing, J. Mater. Sci., 2007, 42(1), p 156–165
CAS
Google Scholar
T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel, A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering, Biomaterials, 2012, 33(26), p 6020–6041
CAS
Google Scholar
H. Korhonen, L.H. Sinh, N.D. Luong, P. Lehtinen, T. Verho, J. Partanen, J. Seppälä, Fabrication of graphene‐based 3D structures by stereolithography, physica status solidi (a), 213(4), 982-985 (2016)
D. Lin, S. Jin, F. Zhang, C. Wang, Y. Wang, C. Zhou, and G.J. Cheng, 3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures, Nanotechnology, 2015, 26(43), p 434003
Google Scholar
B.Z. Jang, J.H. Liu, S. Chen, Z.M. Li, H. Mahfuz, A. Adnan, Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites, ed., Google Patents, 2005
A. Gupta and A. Ogale, Dual Curing of Carbon Fiber Reinforced Photoresins for Rapid Prototyping, Polym. Compos., 2002, 23(6), p 1162–1170
CAS
Google Scholar
S. Kumar and J.P. Kruth, Composites by Rapid Prototyping Technology, Mater. Des., 2010, 31(2), p 850–856
CAS
Google Scholar
R.L. Truby and J.A. Lewis, Printing Soft Matter in Three Dimensions, Nature, 2016, 540(7633), p 371
CAS
Google Scholar
J.A. Lewis, Direct ink Writing of 3D Functional Materials, Adv. Funct. Mater., 2006, 16(17), p 2193–2204
CAS
Google Scholar
J.P. Lewicki, J.N. Rodriguez, C. Zhu, M.A. Worsley, A.S. Wu, Y. Kanarska, J.D. Horn, E.B. Duoss, J.M. Ortega, and W. Elmer, 3D-Printing of Meso-Structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties, Sci. Rep., 2017, 7, p 43401
Google Scholar
J.J. Guo and J.A. Lewis, Aggregation Effects on the Compressive Flow Properties and Drying Behavior of Colloidal Silica Suspensions, J. Am. Ceram. Soc., 1999, 82(9), p 2345–2358
CAS
Google Scholar
L. Jacot-Descombes, M. Gullo, V. Cadarso, and J. Brugger, Fabrication of Epoxy Spherical Microstructures by Controlled Drop-on-Demand Inkjet Printing, J. Micromech. Microeng., 2012, 22(7), p 074012
Google Scholar
D. Kokkinis, M. Schaffner, and A.R. Studart, Multimaterial Magnetically Assisted 3D Printing of Composite Materials, Nat. Communi., 2015, 6, p 8643
Google Scholar
H.-G. Yi, H. Lee, and D.-W. Cho, 3D Printing of Organs-on-Chips, Bioengineering, 2017, 4(1), p 10
Google Scholar
B. Dorj, J.E. Won, J.H. Kim, S.J. Choi, U.S. Shin, and H.W. Kim, Robocasting Nanocomposite Scaffolds of Poly (Caprolactone)/Hydroxyapatite Incorporating Modified Carbon Nanotubes for Hard Tissue Reconstruction, J. Biomed. Mater. Res. Part A, 2013, 101(6), p 1670–1681
Google Scholar
B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, and J.R. Sangoro, Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy, JOM, 2018, 70(3), p 292–297
CAS
Google Scholar
A. Denneulin, J. Bras, A. Blayo, B. Khelifi, F. Roussel-Dherbey, and C. Neuman, The Influence of Carbon Nanotubes in Inkjet Printing of Conductive Polymer Suspensions, Nanotechnology, 2009, 20(38), p 385701
Google Scholar
H.-P. Cong, X.-C. Ren, P. Wang, and S.-H. Yu, Flexible Graphene–Polyaniline Composite Paper for High-Performance Supercapacitor, Energy Environ. Sci., 2013, 6(4), p 1185–1191
CAS
Google Scholar
W. Zhu, C. Yan, Y. Shi, S. Wen, J. Liu, Q. Wei, and Y. Shi, A Novel Method Based on Selective Laser Sintering for Preparing High-Performance Carbon Fibres/Polyamide12/Epoxy Ternary Composites, Sci. Rep., 2016, 6, p 33780
CAS
Google Scholar
C. Yan, L. Hao, L. Xu, and Y. Shi, Preparation, Characterisation and Processing of Carbon Fibre/Polyamide-12 Composites for Selective Laser Sintering, Compos. Sci. Technol., 2011, 71(16), p 1834–1841
CAS
Google Scholar
M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Direct Selective Laser Sintering of Metals, Rapid Prototyp. J., 1995, 1(1), p 26–36
Google Scholar
S. Yuan, Y. Zheng, C.K. Chua, Q. Yan, and K. Zhou, Electrical and Thermal Conductivities of MWCNT/Polymer Composites Fabricated by Selective Laser Sintering, Compos. A Appl. Sci. Manuf., 2018, 105, p 203–213
CAS
Google Scholar
S.R. Athreya, K. Kalaitzidou, and S. Das, Processing and Characterization of a Carbon Black-Filled Electrically Conductive Nylon-12 Nanocomposite Produced by Selective Laser Sintering, Mater. Sci. Eng. A, 2010, 527(10), p 2637–2642
Google Scholar
M. Chapiro, Current Achievements and Future Outlook for Composites in 3D Printing, Reinf. Plast., 2016, 60(6), p 372–375
Google Scholar
Y. Hagedorn, Laser additive manufacturing of ceramic components: materials, processes, and mechanisms, Laser Additive Manufacturing, M. Brandt, Ed., Woodhead Publishing, Cambridge, 2017, p 163–180
Google Scholar
A. Pc, Micro and Nano Fabrication by Powder Metallurgy, J. Powder Metall. Mininged., 2015, 6, p 8
Google Scholar
B. Chen, S. Berretta, K. Evans, K. Smith, and O. Ghita, A Primary Study into Graphene/Polyether Ether Ketone (PEEK) Nanocomposite for Laser Sintering, Appl. Surf. Sci., 2018, 428, p 1018–1028
CAS
Google Scholar
J. Azadmanjiri, V.K. Srivastava, P. Kumar, J. Wang, and A. Yu, Graphene-Supported 2D Transition Metal Oxide Heterostructures, J. Mater. Chem. A, 2018, 6, p 13509–13537
CAS
Google Scholar
A.K. Geim, Graphene: Status and Prospects, Science, 2009, 324(5934), p 1530–1534
CAS
Google Scholar
K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, A Roadmap for Graphene, Nature, 2012, 490(7419), p 192
CAS
Google Scholar
L. Feng, L. Wu, and X. Qu, New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide, Adv. Mater., 2013, 25(2), p 168–186
CAS
Google Scholar
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 2010, 22(35), p 3906–3924
CAS
Google Scholar
K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Graphene Oxide as a Chemically Tunable Platform for Optical Applications, Nat. Chem., 2010, 2(12), p 1015
CAS
Google Scholar
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage, Science, 2015, 347(6217), p 1246501
Google Scholar
P. Suvarnaphaet and S.J.S. Pechprasarn, Graphene-Based Materials for Biosensors: A Review, Sensors, 2017, 17(10), p 2161
Google Scholar
B.J. Schultz, R.V. Dennis, V. Lee, and S.J.N. Banerjee, An Electronic Structure Perspective of Graphene Interfaces, Nanoscale, 2014, 6(7), p 3444–3466
CAS
Google Scholar
M. Baudisch, A. Marini, J.D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L.S. Levitov, and F.J.G.J.N.C. de Abajo, Ultrafast Nonlinear Optical Response of Dirac Fermions in Graphene, Nat. Commun., 2018, 9(1), p 1018
Google Scholar
K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, and T. Li, Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries, Adv. Mater., 2016, 28(13), p 2587–2594
CAS
Google Scholar
T.K. Das and S. Prusty, Graphene-Based Polymer Composites And Their Applications, Polym. Plast. Technol. Eng., 2013, 52(4), p 319–331
CAS
Google Scholar
A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, and R.N. Shah, Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications, ACS Nano, 2015, 9(4), p 4636–4648
CAS
Google Scholar
P. Feng, Y. Kong, L. Yu, Y. Li, C. Gao, S. Peng, H. Pan, Z. Zhao, and C. Shuai, Molybdenum Disulfide Nanosheets Embedded with Nanodiamond Particles: Co-dispersion Nanostructures as Reinforcements for Polymer Scaffolds, Appl. Mater. Today, 2019, 17, p 216–226
Google Scholar
C. Shuai, Y. Li, G. Wang, W. Yang, S. Peng, and P. Feng, Surface Modification of Nanodiamond: Toward the Dispersion of Reinforced Phase in Poly-l-Lactic Acid Scaffolds, Int. J. Biol. Macromol., 2019, 126, p 1116–1124
CAS
Google Scholar
C. Shuai, W. Guo, P. Wu, W. Yang, S. Hu, Y. Xia, and P. Feng, A Graphene Oxide-Ag co-Dispersing Nanosystem: Dual Synergistic Effects on Antibacterial Activities and Mechanical Properties of Polymer Scaffolds, Chem. Eng. J., 2018, 347, p 322–333
CAS
Google Scholar
A. Kausar, I. Rafique, and B. Muhammad, Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay, Polym. Plast. Technol. Eng., 2017, 56(13), p 1438–1456
CAS
Google Scholar
H.C. Kim, H.T. Hahn, and Y.S. Yang, Synthesis of PA12/Functionalized GNP Nanocomposite Powders for the Selective Laser Sintering Process, J. Compos. Mater., 2013, 47(4), p 501–509
CAS
Google Scholar
M.F. De Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Carbon Nanotubes: Present and Future Commercial Applications, Science, 2013, 339(6119), p 535–539
Google Scholar
M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett., 2010, 10(3), p 751–758
CAS
Google Scholar
B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa, Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements, Nat. Nanotechnol., 2008, 3(10), p 626
CAS
Google Scholar
E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature, Nano Lett., 2006, 6(1), p 96–100
CAS
Google Scholar
D. Janas and G. Stando, Unexpectedly Strong Hydrophilic Character of Free-Standing Thin Films from Carbon Nanotubes, Sci. Rep., 2017, 7(1), p 12274
Google Scholar
A. Ihsanullah, A.M. Abbas, T. Al-Amer, M.J. Laoui, M.S. Al-Marri, M. Nasser, and M.A. Khraisheh, Atieh, Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications, Sep. Purif. Technol., 2016, 157, p 141–161
CAS
Google Scholar
M. Burghard, H. Klauk, and K.J.A.M. Kern, Carbon-Based Field-Effect Transistors for Nanoelectronics, Adv. Mater., 2009, 21(25–26), p 2586–2600
CAS
Google Scholar
R.E.E. Shalin, Polymer Matrix Composites, Springer, Berlin, 2012
Google Scholar
M. Cadek, J. Coleman, V. Barron, K. Hedicke, and W. Blau, Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystalline and Amorphous Polymer Composites, Appl. Phys. Lett., 2002, 81(27), p 5123–5125
CAS
Google Scholar
K.-T. Hsiao, J. Alms, and S.G. Advani, Use of Epoxy/Multiwalled Carbon Nanotubes as Adhesives to Join Graphite Fibre Reinforced Polymer Composites, Nanotechnology, 2003, 14(7), p 791
CAS
Google Scholar
J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gunko, Small But Strong: a Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites, Carbon, 2006, 44(9), p 1624–1652
CAS
Google Scholar
Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties, Prog. Polym. Sci., 2010, 35(3), p 357–401
CAS
Google Scholar
W. Bauhofer and J.Z. Kovacs, A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites, Compos. Sci. Technol., 2009, 69(10), p 1486–1498
CAS
Google Scholar
W. Yu, H. Zhou, B.Q. Li, and S. Ding, 3D Printing of Carbon Nanotubes-Based Microsupercapacitors, ACS Appl. Mater. Interfaces, 2017, 9(5), p 4597–4604
CAS
Google Scholar
X. Li, R. Cui, W. Liu, L. Sun, B. Yu, Y. Fan, Q. Feng, F. Cui, and F. Watari, The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials, J. Nanomater., 2013, 2013, p 14
Google Scholar
M.A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, and M. Giersig, Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth, Nano Lett., 2004, 4(11), p 2233–2236
CAS
Google Scholar
B.S. Harrison and A. Atala, Carbon Nanotube Applications for Tissue Engineering, Biomaterials, 2007, 28(2), p 344–353
CAS
Google Scholar
L.P. Zanello, B. Zhao, H. Hu, and R.C. Haddon, Bone Cell Proliferation on Carbon Nanotubes, Nano Lett., 2006, 6(3), p 562–567
CAS
Google Scholar
A. Abarrategi, M.C. Gutiérrez, C. Moreno-Vicente, M.J. Hortigüela, V. Ramos, J.L. López-Lacomba, M.L. Ferrer, and F. del Monte, Multiwall Carbon Nanotube Scaffolds for Tissue Engineering Purposes, Biomaterials, 2008, 29(1), p 94–102
CAS
Google Scholar
F.M. Tonelli, A.K. Santos, K.N. Gomes, E. Lorencon, S. Guatimosim, L.O. Ladeira, and R.R. Resende, Carbon Nanotube Interaction with Extracellular Matrix Proteins Producing Scaffolds for Tissue Engineering, Int. J. Nanomed., 2012, 7, p 4511
CAS
Google Scholar
W. Wang, Y. Zhu, S. Liao, and J. Li, Carbon Nanotubes Reinforced Composites for Biomedical Applications, BioMed Res. Int., 2014, 2014, p 8
Google Scholar
P. Feng, S. Peng, P. Wu, C. Gao, W. Huang, Y. Deng, T. Xiao, and C. Shuai, A Nano-Sandwich Construct Built with Graphene Nanosheets and Carbon Nanotubes Enhances Mechanical Properties of Hydroxyapatite–Polyetheretherketone Scaffolds, Int. J. Nanomed., 2016, 11, p 3487
CAS
Google Scholar
G. Jin and G. Kim, The Effect of Sinusoidal AC Electric Stimulation of 3D PCL/CNT and PCL/β-TCP Based Bio-Composites on Cellular Activities for Bone Tissue Regeneration, J. Mater. Chem. B, 2013, 1(10), p 1439–1452
CAS
Google Scholar
F.H. Gojny, M.H. Wichmann, B. Fiedler, and K. Schulte, Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study, Compos. Sci. Technol., 2005, 65(15–16), p 2300–2313
CAS
Google Scholar
F. Gojny, M. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content, Compos. Sci. Technol., 2004, 64(15), p 2363–2371
CAS
Google Scholar
M. Zhang, X. Song, W. Grove, E. Hull, Z. Pei, F. Ning, and W. Cong, Carbon nanotube reinforced fused deposition modeling using microwave irradiation, ASME 2016 11th International Manufacturing Science and Engineering Conference, 2016, American Society of Mechanical Engineers, pp. V003T008A007-V003T008A007
F. Naya, C. González, C.S. Lopes, S. Van der Veen, and F. Pons, Computational Micromechanics of the Transverse and Shear Behavior of Unidirectional Fiber Reinforced Polymers Including Environmental Effects, Compos. A Appl. Sci. Manuf., 2017, 92, p 146–157
CAS
Google Scholar
K. Schulte, S. Chandrasekaran, C. Viets, and B. Fiedler, New functions in polymer composites using a nanoparticle-modified matrix, Multifunctionality of Polymer Compositesed, Vol 30, K. Friedrich and U. Breuer, Ed., William Andrew Publishing, Burlington, 2015, p 875–902
Google Scholar
A.T. DiBenedetto and L. Pinatti, Harnessing the properties of fiber-reinforced composites in the design of tissue-engineered scaffolds, Biomedical Compositesed, L. Ambrosio, Ed., Woodhead Publishing, Switzerland, 2010, p 296–322
Google Scholar
J. Wen, Z. Xia, and F. Choy, Damage Detection of Carbon Fiber Reinforced Polymer Composites Via Electrical Resistance Measurement, Compos. B Eng., 2011, 42(1), p 77–86
Google Scholar
A. Razaq, L. Nyholm, M. Sjödin, M. Strømme, and A. Mihranyan, Paper-Based Energy-Storage Devices Comprising Carbon Fiber-Reinforced Polypyrrole-Cladophora Nanocellulose Composite Electrodes, Adv. Energy Mater., 2012, 2(4), p 445–454
CAS
Google Scholar
S.J. Park and M.K. Seo, Carbon Fiber-Reinforced Polymer Composites: Preparation, Properties, and Applications, Polym. Compos., 2012, 12, p 135–183
Google Scholar
D.D. Chung and D. Chung, Carbon Fiber Composites, Elsevier, Amsterdam, 2012
Google Scholar
B.A. Newcomb and H.G. Chae, The properties of carbon fibers, Handbook of Properties of Textile and Technical Fibres, 2nd ed., A.R. Bunsell, Ed., Woodhead Publishing, Switzerland, 2018, p 841–871
Google Scholar
S.M.J.I. Dambrot, Chemistry Helps Athlete Keep Moving, ChemMaters, 2016, 2015, p 20
Google Scholar
Z. Xu and C.J.M.T. Gao, Graphene Fiber: A New Trend in Carbon Fibers, Mater. Today, 2015, 18(9), p 480–492
CAS
Google Scholar
F. Derbyshire, R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber, and T.J.F. Rantell, Synthesis of Isotropic Carbon fibers and Activated Carbon Fibers from Pitch Precursors, Fuel, 2001, 80(3), p 345–356
CAS
Google Scholar
S.-Y. Fu and B. Lauke, Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers, Compos. Sci. Technol., 1996, 56(10), p 1179–1190
CAS
Google Scholar
F. Van Der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, and R. Matsuzaki, 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens, Open J. Compos. Mater, 2016, 6(1), p 18–27
Google Scholar
G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, and W.Y. Yeong, Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics, Mater. Des., 2018, 137, p 79–89
CAS
Google Scholar
A.N. Dickson, J.N. Barry, K.A. McDonnell, and D.P. Dowling, Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing, Addit. Manuf., 2017, 16, p 146–152
CAS
Google Scholar