Skip to main content
Log in

Effect of Cr and Mn Addition on the Microstructure, Texture, and Mechanical Properties of Ternary Low-Density Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the Fe-Al-based compositions developed as low-density steel are subjected to addition of Cr and Mn to increase the elastic modulus. In this regard, Fe-3.7Al-3.1Mn and Fe-6.5Al-6.3Cr steels are produced via melting and casting. The steels are cold-rolled to 98% thickness reduction followed by subsequent annealing at 750 °C. A detailed characterization based on x-ray diffraction and electron back-scattering diffraction shows the stabilization of ferrite phase upon the addition of Cr and Mn with a further reduction in density. The expansion of the lattice is observed after ternary alloying additions. The increase in the yield stress and ultimate tensile strength is noticed upon ternary alloying additions. The Cr and Mn addition also led to an increase in the elastic modulus compared to binary Fe-Al low-density steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Rana, C. Liu, and R.K. Ray, Low-Density Low-Carbon Fe-Al Ferritic Steels, Scr. Mater., 2013, 68(6), p 354–359

    CAS  Google Scholar 

  2. D.W. Suh and N.J. Kim, Low-Density Steels, Scr. Mater., 2013, 68(6), p 337–338

    CAS  Google Scholar 

  3. G. Davies, Materials for Automobile Bodies, 2nd ed., Butterworth-Heinemann, London, 2012

    Google Scholar 

  4. F. Morestin, M. Boivin, and C. Silva, Elasto Plastic Formulation Using a Kinematic Hardening Model for Springback Analysis in Sheet Metal Forming, J. Mater. Process Technol., 1996, 56(1–4), p 619–630

    Google Scholar 

  5. U. Bohnenkamp and R. Sandström, Evaluation of the Elastic Modulus of Steels, Steel Res. Int., 2000, 71(3), p 94–99

    CAS  Google Scholar 

  6. S. Chen, R. Rana, A. Haldar, and R.K. Ray, Current State of Fe-Mn-Al-C Low Density Steels, Prog. Mater Sci., 2017, 89, p 345–391

    CAS  Google Scholar 

  7. Y. Yazawa, M. Muraki, Y. Kato, and O. Furukimi, Effect of Chromium Content on Relationship Between r-Value and 111 Recrystallization Texture in Ferritic Steel, ISIJ Int., 2003, 43(10), p 1647–1651

    CAS  Google Scholar 

  8. A. Sleeswyk, ½ <111> Screw Dislocations and the Nucleation of {112} <111> Twins in the BCC Lattice, Philos. Mag., 1963, 8(93), p 1467–1486

    Google Scholar 

  9. H. Inoue, Recrystallization Textures and Their Application to Structure Control, ISIJ Int., 1999, 174

  10. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue, Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe-Mn-Al Alloys, ISIJ Int., 1989, 29(10), p 868–877

    CAS  Google Scholar 

  11. K.-T. Park, Tensile Deformation of Low-Density Fe-Mn-Al-C Austenitic Steels at Ambient Temperature, Scr. Mater., 2013, 68(6), p 375–379

    CAS  Google Scholar 

  12. I. Gutierrez-Urrutia and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels, Scripta Mater., 2013, 68(6), p 343–347

    CAS  Google Scholar 

  13. X. Li, R. Song, N. Zhou, and J. Li, Microstructure and Tensile Behavior of Fe-8Mn-6Al-0.2C Low Density Steel, Mater. Sci. Eng., A, 2018, 709, p 97–104

    CAS  Google Scholar 

  14. H.R. Abedi, A.Z. Hanzaki, N. Haghdadi, and P.D. Hodgson, Substructure Induced Twinning in Low Density Steel, Scr. Mater., 2017, 128, p 69–73

    CAS  Google Scholar 

  15. W.T. Chao, R. Rana, and C. Liu, Microstructure Characterisation of a Low Density Steel by Transmission Electron Microscopic Study, Mater. Sci. Eng. A, 2014, 617, p 187–193

    CAS  Google Scholar 

  16. S. Pramanik and S. Suwas, Low-Density Steels: The Effect of Al Addition on Microstructure and Properties, JOM, 2014, 66(9), p 1868–1876

    CAS  Google Scholar 

  17. S. Pramanik, S. Koppoju, A.V. Anupama, B. Sahoo, and S. Suwas, Strengthening Mechanisms in Fe-Al Based Ferritic Low-Density Steels, Mater. Sci. Eng. A, 2018, 712, p 574–584

    CAS  Google Scholar 

  18. C. Castan, F. Montheillet, and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe-8% Al Low Density Steel Under Hot Rolling Conditions, Scr. Mater., 2013, 68(6), p 360–364

    CAS  Google Scholar 

  19. A. Szczepaniak, H. Springer, R. Aparicio-Fernández, C. Baron, and D. Raabe, Strengthening Fe-TiB2 Based High Modulus Steels by Precipitations, Mater. Des., 2017, 124, p 183–193

    CAS  Google Scholar 

  20. C. Baron, H. Springer, and D. Raabe, Development of High Modulus Steels Based on the Fe-Cr-B System, Mater. Sci. Eng. A, 2018, 724, p 142–147

    CAS  Google Scholar 

  21. C. Baron, H. Springer, and D. Raabe, Effects of Mn Additions on Microstructure and Properties of Fe-TiB2 Based High Modulus Steels, Mater. Des., 2016, 111, p 185–191

    CAS  Google Scholar 

  22. M. Ferrari and L. Lutterotti, Method for the Simultaneous Determination of Anisotropic Residual Stresses and Texture by X-Ray Diffraction, J. Appl. Phys., 1994, 76(11), p 7246–7255

    CAS  Google Scholar 

  23. R. Hielscher and H. Schaeben, A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm, J. Appl. Crystallogr., 2008, 41(6), p 1024–1037

    CAS  Google Scholar 

  24. R. Lebensohn and C. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater., 1993, 41(9), p 2611–2624

    CAS  Google Scholar 

  25. S.A. Kim and W.L. Johnson, Elastic Constants and Internal Friction Of Martensitic Steel, Ferritic-Pearlitic Steel, and α-Iron, Mater. Sci. Eng. A, 2007, 452–453, p 633–639

    Google Scholar 

  26. R. Rana, C. Liu, and R.K. Ray, Evolution of Microstructure and Mechanical Properties During Thermomechanical Processing of a Low-Density Multiphase Steel for Automotive Application, Acta Mater., 2014, 75, p 227–245

    CAS  Google Scholar 

  27. R.K. Ray, J.J. Jonas, and R.E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mater. Rev., 1994, 39(4), p 129–172

    CAS  Google Scholar 

  28. F. Bachmann, R. Hielscher, and H. Schaeben, Texture Analysis with MTEX–Free and Open Source Software Toolbox, Sol. St. Phen., 2010, Trans Tech Publ, p 63–68

  29. H.J. Bunge, R. Kiewel, T. Reinert, and L. Fritsche, Elastic Properties of Polycrystals—Influence of Texture and Stereology, J. Mech. Phys. Solids, 2000, 48(1), p 29–66

    Google Scholar 

  30. M. Humbert and J. Diz, Some Practical Features for Calculating the Polycrystalline Elastic Properties from Texture, J. Appl. Crystallogr., 1991, 24(6), p 978–981

    Google Scholar 

  31. S.R. Agnew and J.R. Weertman, The Influence of Texture on the Elastic Properties of Ultrafine-Grain Copper, Mater. Sci. Eng., A, 1998, 242(1–2), p 174–180

    Google Scholar 

  32. S. Pramanik, S. Suwas, and R.K. Ray, Influence of Crystallographic Texture and Microstructure on Elastic Modulus of Steels, Can. Metall. Q., 2014, 53(3), p 274–281

    CAS  Google Scholar 

  33. M. Liu, B. Shi, J. Guo, X. Cai, and H. Song, Lattice Constant Dependence of Elastic Modulus for Ultrafine Grained Mild Steel, Scr. Mater., 2003, 49(2), p 167–171

    CAS  Google Scholar 

  34. C.A. Stickels and P.R. Mould, The Use of Young’s Modulus for Predicting the Plastic-Strain Ratio of Low-Carbon Steel Sheets, Metall. Mater. Trans. B, 1970, 1(5), p 1303–1312

    CAS  Google Scholar 

  35. S. Hoile, Processing and Properties of Mild Interstitial Free Steels, Mater. Sci. Technol. Ser., 2000, 16(10), p 1079–1093

    CAS  Google Scholar 

  36. S.K. Panda, D.R. Kumar, H. Kumar, and A.K. Nath, Characterization of Tensile Properties of Tailor Welded IF Steel Sheets and Their Formability in Stretch Forming, J. Mater. Process Technol., 2007, 183(2–3), p 321–332

    CAS  Google Scholar 

  37. J.H. Han, H.K. Seok, Y.H. Chung, M.C. Shin, and J.C. Lee, Texture Evolution of the Strip Cast 1050 Al Alloy Processed by Continuous Confined Strip Shearing and Its Formability Evaluation, Mater. Sci. Eng. A, 2002, 323(1–2), p 342–347

    Google Scholar 

  38. G. Frommeyer, E. Drewes, and B. Engl, Physical and Mechanical Properties of Iron-Aluminium-(Mn, Si) Lightweight Steels, Rev. Metall., 2000, 97(10), p 1245–1253

    CAS  Google Scholar 

  39. A.C. Lilly, S.C. Deevi, and Z.P. Gibbs, Electrical Properties of Iron Aluminides, Mater. Sci. Eng. A, 1998, 258(1–2), p 42–49

    Google Scholar 

  40. O.N. Senkov and D.B. Miracle, Effect of the Atomic Size Distribution on Glass Forming Ability of Amorphous Metallic Alloys, Mater. Res. Bull., 2001, 36(12), p 2183–2198

    CAS  Google Scholar 

  41. D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Springer, Amsterdam, 2012, p 1

    Google Scholar 

  42. M. Hillert, Solute Drag, Solute Trapping and Diffusional Dissipation of Gibbs Energy, Acta Mater., 1999, 47(18), p 4481–4505

    CAS  Google Scholar 

  43. T. Nakayama and N. Honjou, Effect of Aluminum and Nitrogen on the Magnetic Properties of Non-Oriented Semi-Processed Electrical Steel Sheet, J. Magn. Magn. Mater., 2000, 213(1–2), p 87–94

    CAS  Google Scholar 

  44. W.C. Jeong, Effect of Aluminum and Nitrogen on Microstructure of Ultra-Low-Carbon Nb-IF Steels, Metall. Trans. A, 2009, 40(6), p 1280–1283 (in English)

    Google Scholar 

  45. T.H. Courtney, Mechanical Behavior of Materials, 2nd ed., Waveland Press, Long Grove, 2005

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge DST-FST Grant for the SEM facility at Institute of Nano-Science Initiative, Indian Institute of Science. The authors are thankful to Mr. Sashidhara for his help in carrying out the tension tests in INSTRON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Pramanik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S., Suwas, S. Effect of Cr and Mn Addition on the Microstructure, Texture, and Mechanical Properties of Ternary Low-Density Steels. J. of Materi Eng and Perform 29, 4435–4445 (2020). https://doi.org/10.1007/s11665-020-04930-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04930-7

Keywords

Navigation