Skip to main content
Log in

Enhanced Mechanical Properties of a Gradient Nanostructured Medium Manganese Steel and Its Grain Refinement Mechanism

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As the third generation of advanced high strength steel (AHSS), medium manganese steel (MMS) has been widely emphasized by scholars around the world. Presently, we applied sliding friction treatment (SFT) of severe plastic deformation (SPD) on the surface of MMS to form surface gradient nanostructures, the formation mechanism of microstructure and the corresponding mechanical behavior was studied. The results show that the deformation layer can be divided into nano-grain (NG), submicron grain (SMG) and coarse grain (CG) in terms of grain size. It has been demonstrated that in the CG layer and a part of SMG layer, new fine grains can be formed through discontinuous dynamic recrystallization (DDR) mechanism, while continuous dynamic recrystallization (CDR) is a favorable nucleation mechanism for the new formed small grains in the SMG layer and the NG layer. The SFT process increases microhardness sharply in the surface region. Compared with conventional MMS, it is apparent that the yield strength (YS) and the ultimate tensile strength (UTS) of gradient medium manganese steel specimens have been greatly improved, while the elongation does not decrease significantly. Fracture surface analysis demonstrates that the fracture morphology of different layers can be generally characterized by different fracture mechanisms, i.e., cleavage, quasi-cleavage and dimple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1589

    Article  CAS  Google Scholar 

  2. H.Y. Yi, F.K. Yan, N.R. Tao, and K. Lu, Work Hardening Behavior of Nanotwinned Austenitic Grains in a Metastable Austenitic Stainless Steel, Scr. Mater., 2016, 114, p 133–136

    Article  CAS  Google Scholar 

  3. L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Twin-Induced Plasticity of an ECAP-Processed TWIP Steel, J. Mater. Eng. Perform., 2017, 26(2), p 554–562

    Article  CAS  Google Scholar 

  4. L. Wang, J.A. Benito, J. Calvo, and J.M. Cabrera, Equal Channel Angular Pressing of a TWIP Steel: Microstructure and Mechanical Response, J. Mater. Sci., 2017, 52(11), p 6291–6309

    Article  CAS  Google Scholar 

  5. Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, and H.J. Gao, Evading the Strength-Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580–3581

    Article  Google Scholar 

  6. K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456

    Article  CAS  Google Scholar 

  7. C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, Y.Z. Tian, and Z.F. Zhang, Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening from Gradient Microstructure, Acta Mater., 2018, 145, p 413–428

    Article  CAS  Google Scholar 

  8. X.P. Yong, “Master Thesis”, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2001

  9. T. Roland, D. Retraint, K. Lu, and J. Lu, Enhanced Mechanical Behavior of a Nanocrystallised Stainless Steel and Its Thermal Stability, Mater. Sci. Eng. A, 2007, 445–446, p 281–288

    Article  Google Scholar 

  10. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. United State Am., 2014, 111(20), p 7197–7201

    Article  CAS  Google Scholar 

  11. R. Kalsar and S. Suwas, A Novel Way to Enhance the Strength of Twinning Induced Plasticity (TWIP) Steels, Scr. Mater., 2018, 154, p 207–211

    Article  CAS  Google Scholar 

  12. D. Ba, F. Meng, and X. Liu, Friction and Wear Behaviors of Surface Nanocrystalline Layer Prepared on Medium Manganese Surfacing Layer Under Oil Lubrication, Tribol. Int., 2014, 80, p 210–215

    Article  CAS  Google Scholar 

  13. W. He, W. Ma, and W. Pantleon, Microstructure of Individual Grains in Cold-Rolled Aluminium from Orientation Inhomogeneities Resolved by Electron Backscattering Diffraction, Mater. Sci. Eng. A, 2008, 494, p 21–27

    Article  Google Scholar 

  14. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and Mechanical Properties of Fe–0.2C–5Mn Steel Processed by ART-Annealing, Mater. Sci. Eng. A, 2011, 528(22–23), p 6661–6666

    Article  CAS  Google Scholar 

  15. W. Zhan, L.Q. Cao, J. Hu, W.Q. Cao, J. Li, and H. Dong, Intercritical Rolling Induced Ultrafine Lamellar Structure and Enhanced Mechanical Properties of Medium Mn Steel, J. Iron. Steel Res. Int., 2014, 21(5), p 551–558

    Article  CAS  Google Scholar 

  16. J. Hu, W.Q. Cao, C.Y. Wang, H. Dong, and J. Li, Austenite Stability and Its Effect on the Ductility of the Cold-Rolled Medium-Mn Steel, ISIJ Int., 2014, 54(8), p 1952–1957

    Article  CAS  Google Scholar 

  17. Y.B. Lei, Z.B. Wang, J.L. Xu, and K. Lu, Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure, Acta Mater., 2019, 168, p 133–142

    Article  CAS  Google Scholar 

  18. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. USA, 2014, 111(20), p 7197–7201

    Article  CAS  Google Scholar 

  19. G. Frommeyer, E.J. Drewes, and B. Engl, Physical and Mechanical Properties of Iron-Aluminium-(Mn, Si) Lightweight Steels, Revue de Metall., 2000, 97(10), p 1245–1253

    Article  CAS  Google Scholar 

  20. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship Between Grain Size and Zener-Holloman Parameter during Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514

    Article  CAS  Google Scholar 

  21. A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating Grain Size to the Zener-Hollomon Parameter for Twin-Roll-Cast AZ31B Alloy Refined by Friction Stir Processing, J. Mater. Process. Tech., 2015, 222, p 301–306

    Article  CAS  Google Scholar 

  22. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274

    Article  Google Scholar 

  23. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  CAS  Google Scholar 

  24. F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004

    Google Scholar 

  25. W. Zhang, J.W. Lu, W.T. Huo, Y.S. Zhang, and Q. Wei, Microstructural Evolution of AZ31 Magnesium Alloy Subjected to Sliding Friction Treatment, Philos. Mag., 2018, 98(17), p 1576–1593

    Article  CAS  Google Scholar 

  26. Y.H. Wei, B.S. Liu, L.F. Hou, B.S. Xu, and G. Liu, Characterization and Properties of Nanocrystalline Surface Layer in Mg Alloy Induced by Surface Mechanical Attrition Treatment, J. Alloys Compd., 2008, 452, p 336–342

    Article  CAS  Google Scholar 

  27. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55, p 4041–4065

    Article  CAS  Google Scholar 

  28. B. Arifvianto, Mahardika M. Suyitno, P. Dewo, P.T. Iswanto, and U.A. Salim, Effect of Surface Mechanical Attrition Treatment (SMAT) on Microhardness, Surface Roughness and Wettability of AISI, 316L, Mater. Chem. Phys., 2011, 2011(125), p 418–426

    Article  Google Scholar 

  29. N.R. Tao, H.W. Zhang, J. Lu, and K. Lu, Development of Nanostructures in Metallic Materials with Low Stacking Fault Energies during Surface Mechanical Attrition Treatment (SMAT) (Overview), Mater. Trans., 2003, 44, p 1919–1925

    Article  CAS  Google Scholar 

  30. G. Niu, H.B. Wu, D. Zhang, and N. Gong, Hybrid Nanostructure Stainless Steel with Super-High Strength and Toughness, Procedia Eng., 2017, 207, p 1791–1796

    Article  CAS  Google Scholar 

  31. Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang, and Y.T. Zhu, Extra Strengthening in a Coarse/Ultrafine Grained Laminate: Role of Gradient Interfaces, Int. J. Plast., 2019, 123, p 196–207

    Article  CAS  Google Scholar 

  32. X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The Deformation Behavior of AZ31 Mg Alloy with Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2017, 707, p 636–646

    Article  CAS  Google Scholar 

  33. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Synergetic Strengthening by Gradient Structure, Mater. Res. Lett., 2014, 2, p 185–191

    Article  CAS  Google Scholar 

  34. H.J. Gao and Y.G. Huang, Geometrically Necessary Dislocation and Size-Dependent Plasticity, Scr. Mater., 2003, 48(2), p 113–118

    Article  CAS  Google Scholar 

  35. D.A. Hughes, N. Hansen, and D.J. Bammann, Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations, Scr. Mater., 2003, 48(2), p 147–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been financially supported by Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0604) and China Petroleum Science and Technology Innovation Fund (2018D-5007-0216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Yuntao Xi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, M., Tan, H. et al. Enhanced Mechanical Properties of a Gradient Nanostructured Medium Manganese Steel and Its Grain Refinement Mechanism. J. of Materi Eng and Perform 29, 3812–3823 (2020). https://doi.org/10.1007/s11665-020-04903-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04903-w

Keywords

Navigation