Skip to main content
Log in

Microstructure, Tribological Behavior, and Strengthening Mechanisms of the Friction Interface Layer with Nanocrystalline Structure of Ni3Al Matrix Self-lubricating Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work investigated the microstructure, tribological behavior and strengthening mechanisms of friction interface layer with nanocrystalline structure of graphene-reinforced Ni3Al matrix composites (GNMCs) synthesized using laser melting deposition. A dislocation density-based model was selected to analyze the mechanisms of the improvement in the wear resistance of the friction interface layer from initial wear stage to stable wear stage. Results show that GNMCs exhibit excellent antifriction and wear resistance in the stable wear stage due to the formation of friction interface layer with nanocrystalline structure. Grain boundary strengthening is the predominant strengthening mechanism of friction interface layer of GNMCs. Dislocations are blocked at grain boundaries to form complex dislocation barriers, further contributing to the high strength and wear resistance. The dislocation density-based model can be successfully used to predict the mechanical response of the friction interface layer subjected to the grain refinement during sliding friction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Yan, X.L. Shi, Y.C. Huang, X.B. Deng, X.Y. Liu, and K. Yang, Tribological Performance of Ni3Al Matrix Self-Lubricating Composites Containing Multilayer Graphene Prepared by Additive Manufacturing, J. Mater. Eng. Perform., 2018, 27(1), p 167–175

    CAS  Google Scholar 

  2. W.Z. Zhai, X.L. Shi, J. Yao, A.M.M. Ibrahim, Z.S. Xu, Q.S. Zhu, Y.C. Xiao, L. Chen, and Q.X. Zhang, Investigation of Mechanical and Tribological Behaviors of Multilayer Graphene Reinforced Ni3Al Matrix Composites, Compos. Part B Eng., 2015, 70, p 149–155

    CAS  Google Scholar 

  3. P. Jozwik, W. Polkowski, and Z. Bojar, Applications of Ni3Al Based Intermetallic Alloys-Current Stage and Potential Perceptivities, Materials, 2015, 8(5), p 2537–2568

    CAS  Google Scholar 

  4. G.C. Lu, X.L. Shi, X.Y. Liu, H.Y. Zhou, and Y. Chen, Effects of Functionally Gradient Structure of Ni3Al Metal Matrix Self-lubrication Composites on Friction-Induced Vibration and Noise and Wear Behaviors, Tribol. Int., 2019, 135, p 75–78

    CAS  Google Scholar 

  5. Y.C. Huang, X.L. Shi, K. Yang, X.Y. Liu, and Z.H. Wang, Effects of Frictional Heat on the Tribological Properties of Ni3Al Matrix Self-lubrication Composite Containing Graphene Nanoplatelets Under Different Loads, P. I. Mech. Eng. J-J Eng., 2018, 232(6), p 645–656

    CAS  Google Scholar 

  6. H. Nakae, H. Fujii, K. Nakajima, and A. Goto, Infiltration and Combustion Synthesis of an Intermetallic Compound Ni3Al, Mater. Sci. Eng. A Struct., 1997, 223(1), p 21–28

    Google Scholar 

  7. D. Berman, S.A. Deshmukh, S.K.R.S. Sankaranarayanan, A. Erdemir, and A.V. Sumant, Macroscale Superlubricity Enabled by Graphene Nanoscroll Formation, Science, 2015, 348, p 1117–1122

    Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907

    CAS  Google Scholar 

  9. Y.C. Huang, X.L. Shi, X.Y. Liu, Z. Yan, and X.B. Deng, Tribological Performance of Ni3Al Matrix Composites Synthesized by Laser Melt Deposition Under Different Scanning Velocities, J. Mater. Eng. Perform., 2018, 27(4), p 1962–1972

    CAS  Google Scholar 

  10. Q.S. Zhu, X.L. Shi, W.Z. Zhai, K. Yang, A.M.M. Ibrahim, Z.S. Xu, L. Chen, Y.C. Xiao, A. Zhang, and Q.X. Zhang, Influence of Subsurface Micro/Nano Structural Evolution on Macroscopic Tribological Behavior of Ni3Al Matrix Composites, Tribol. Lett., 2015, 57(3), p 21–28

    Google Scholar 

  11. D. Berman, A. Erdemir, and A.V. Sumant, Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces, Carbon, 2013, 54, p 454–459

    CAS  Google Scholar 

  12. W.Z. Zhai, and K. Zhou, Nanomaterials in Superlubricity, Adv. Funct. Mater., 2019, 29(28), p 1806395

    Google Scholar 

  13. Z.S. Xu, X.L. Shi, W.Z. Zhai, M. Wang, Z.W. Zhu, J. Yao, S.Y. Song, and Q.X. Zhang, Preparation and Tribological Properties of TiAl Matrix Composites Reinforced by Multilayer Graphene, Carbon, 2014, 67, p 168–177

    CAS  Google Scholar 

  14. X.Y. Liu, X.L. Shi, G.C. Lu, X.B. Deng, H.Y. Zhou, Z. Yan, Y. Chen, and B. Xue, The Synergistic Lubricating Mechanism of Sn-Ag-Cu and C60 on the Worn Surface of M50 Self-lubricating Material at Elevated Loads, J. Alloys Compd., 2019, 777, p 271–284

    CAS  Google Scholar 

  15. Y.C. Huang, X.L. Shi, K. Yang, J.L. Zou, Q. Shen, Y.F. Wang, and Z.H. Wang, Effects of Friction Layer Thickness on the Tribological Performance of Ni3Al-Ag-MoO3, J. Mater. Eng. Perform., 2017, 26(5), p 2313–2321

    CAS  Google Scholar 

  16. W.Z. Zhai, W.L. Lu, P. Zhang, J. Wang, X.J. Liu, and L.P. Zhou, Wear-Triggered Self-healing Behavior on the Surface of Nanocrystalline Nickel Aluminum Bronze/Ti3SiC2 Composites, Appl. Surf. Sci., 2018, 436, p 1038–1049

    CAS  Google Scholar 

  17. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater Sci., 2006, 51(4), p 427–556

    CAS  Google Scholar 

  18. W.Z. Zhai, X.L. Shi, Z.S. Xu, and A. Zhang, Investigation of the Friction Layer of Ni3Al Matrix Composites, Wear, 2015, 328–329, p 39–49

    Google Scholar 

  19. X. Wang, X.L. Hong, J.Y. Yang, W.R. Wang, and X.C. Wei, Formation of Sliding Friction-Induced Deformation Layer with Nanocrystalline Structure in T10 Steel Against 20CrMnTi Steel, Appl. Surf. Sci., 2013, 280, p 381–387

    CAS  Google Scholar 

  20. P.L. Menezes Kishore and V.S. Kailas, Subsurface Deformation and the Role of surface texture-A Study with Cu Pins and Steel Plates, Sadhana Acad. P Eng. S., 2008, 33(3), p 191–201

    Google Scholar 

  21. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels, Science, 2017, 357, p 1029–1032

    CAS  Google Scholar 

  22. Q.S. Zhu, X.L. Shi, W.Z. Zhai, J. Yao, A.M.M. Ibrahim, Z.S. Xu, S.Y. Song, A.Q. Din, L. Chen, Y.C. Xiao, and Q.X. Zhang, Effect of Counterface Balls on the Friction Layer of Ni3Al Matrix Composites with 15 wt.% Graphene Nanoplatelets, Tribol. Lett., 2014, 55(2), p 343–352

    CAS  Google Scholar 

  23. A.L.J. Aufrecht, J. Foct, and E.J. Mittemeijer, The Structure of Nitrogen-Supersaturated Ferrite Produced by Ball Milling, Phil. Mag. A, 2008, 88(12), p 1835–1855

    CAS  Google Scholar 

  24. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ Int., 2010, 50(6), p 875–882

    CAS  Google Scholar 

  25. X.C. Wang and X.Y. Zhang, Materials Modern Analysis and Testing Technology, National Defense Industry Press, Beijing, 2010

    Google Scholar 

  26. R.X. Jia, Y.M. Zhang, Y.M. Zhang, and H. Guo, Calculates of the Dislocation Density in 4H-SiC Single Crystal by XRD Method, Spectrosc. Spect. Anal., 2010, 30(7), p 1995–1997

    CAS  Google Scholar 

  27. T.J. Rupert and C.A. Schuh, Sliding Wear of Nanocrystalline Ni-W, Structural Evolution and the Apparent Breakdown of Archard Scaling, Acta Mater., 2010, 58(12), p 4137–4148

    CAS  Google Scholar 

  28. W.Z. Zhai, W.L. Lu, P. Zhang, M.Z. Zhou, X.J. Liu, and L.P. Zhou, Microstructure, Mechanical and Tribological Properties of Nickel-Aluminium Bronze Alloys Developed Via Gas-Atomization and Spark Plasma Sintering, Mat. Sci. Eng. A Struct., 2017, 707, p 325–336

    CAS  Google Scholar 

  29. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 1995

    Google Scholar 

  30. R. Liu and D.Y. Li, Modification of Archard’s Equation by Taking Account of Elastic/Pseudoelastic Properties of Materials, Wear, 2001, 251(1), p 956–964

    Google Scholar 

  31. F. Zhou, X.B. Wang, and W.M. Liu, Nanometer Lubrication Materials and Technology, Beijing Science and Technology Press, Beijing, 2014, p 232

    Google Scholar 

  32. D. Hull and D.J. Bacon, Introduction to Dislocations, 4th ed., Butterworth-Heinemann, Woburn, 2001

    Google Scholar 

  33. X. Wang, Microstructure Evolution and Diffusion Behavior in Dry Sliding Friction-Induced Deformation Layers of T10/20CrMnTi Tribopairs, Shanhai University, Shanghai, 2013

    Google Scholar 

  34. J.S. Pan, J.M. Tong, and M.B. Tian, Fundamentals of Materials Science, Tsinghua University Press, Beijing, 2011

    Google Scholar 

  35. L. Balogh, T. Ungár, Y.H. Zhao, Y.T. Zhu, Z.J. Horita, C. Xu, and T.G. Langdon, Influence of Stacking-Fault Energy on Microstructural Characteristics of Ultrafine-Grain Copper and Copper-Zinc Alloys, Acta Mater., 2008, 56(4), p 809–820

    CAS  Google Scholar 

  36. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening Mechanisms in a High-Strength Bulk Nanostructured Cu-Zn-Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61(8), p 2769–2782

    CAS  Google Scholar 

  37. Y.J. Li, X.H. Zeng, and W. Blum, Transition from Strengthening to Softening by Grain Boundaries in Ultrafine-Grained Cu, Acta Mater., 2004, 52(17), p 5009–5018

    CAS  Google Scholar 

  38. W.Z. Zhai, Research on Formation and Effecting Mechanisms of Friction Layer of Ni3Al Matrix Self-lubricating Composites, Wuhan University of Technology, Wuhan, 2016

    Google Scholar 

  39. G.E. Dieter, Mechanical Metallurgy (SI, Metric Adaptation), McGraw-Hill Higher Education, New York, 2011

    Google Scholar 

  40. V. Panin, A. Kolubaev, S. Tarasov, and V. Popov, Subsurface Layer Formation During Sliding Friction, Wear, 2002, 249(10), p 860–867

    Google Scholar 

  41. J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain Boundary Stability Governs Hardening and Softening in Extremely Fine Nanograined Metals, Science, 2017, 355(2), p 1292–1296

    CAS  Google Scholar 

  42. J.J. Li and A.K. Soh, Modeling of the Plastic Deformation of Nanostructured Materials with Grain Size Gradient, Int. J. Plast., 2012, 39(4), p 88–102

    CAS  Google Scholar 

  43. U.F. Kocks, A.S. Argon, and M.F. Ashby, The Strength of Metals and Alloys, Prog. Mater Sci., 1975, 19, p 1

    Google Scholar 

  44. Y. Huang, S. Qu, K.C. Hwang, M. Li, and H. Gao, A Conventional Theory of Mechanism-Based Strain Gradient Plasticity, Int. J. Plast., 2004, 20(4–5), p 753–782

    Google Scholar 

  45. Q. Wei, Strain Rate Effects in the Ultrafine Grain and Nanocrystalline Regimes-Influence on Some Constitutive Responses, J. Mater. Sci., 2007, 42(5), p 1709–1727

    CAS  Google Scholar 

  46. W.Z. Zhai, X.L. Shi, K. Yang, Y.C. Huang, L.L. Zhou, and W.L. Lu, Mechanical and Tribological Behaviors of the Tribo-Layer with Nanocrystalline Structure During Sliding Contact, Experiments and Model Assessment, Compos. Part B Eng., 2017, 108, p 354–363

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51275370) and the Doctor Cultivation Funds of Henan University of Engineering (DKJ2019023). Authors were grateful to X.L. Nie, M.J. Yang and W.T. Zhu in Material Research and Test Center of WUT for their kind help with EPMA and FESEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liu, J., Meng, Y. et al. Microstructure, Tribological Behavior, and Strengthening Mechanisms of the Friction Interface Layer with Nanocrystalline Structure of Ni3Al Matrix Self-lubricating Composites. J. of Materi Eng and Perform 29, 3757–3766 (2020). https://doi.org/10.1007/s11665-020-04881-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04881-z

Keywords

Navigation