Skip to main content
Log in

An Investigation on Anisotropy Behavior and Forming Limit of 5182-H111 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper studies the anisotropy behavior and forming limit of 5182-H111 aluminum alloy by experiments and theoretical analysis. The uniaxial tension tests for three different sheet directions were conducted to investigate the anisotropic properties of Al5182-H111 sheet. Moreover, the Nakajima tests for both rolling and transverse directions were performed to get the forming limit data. The experimental results show that the forming limit curves (FLCs) for rolling direction are much lower than that for transverse direction. In order to further investigate the influence of anisotropic properties on FLCs, the theoretical prediction of FLC was accomplished based on three different hardening laws. The results show that the theoretical FLC with Ghosh hardening law has much better agreement with experimental data. Furthermore, a new FLC was proposed by extending the forming limit from the strain state of uniaxial tension at transverse direction to the strain state of uniaxial tension at rolling direction. The adaptability of new FLC was verified in the Drawing test and Erichsen cupping test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Hirsch, Recent Development in Aluminium for Automotive Applications, Trans. Nonferrous Met. Soc. China, 2014, 24(7), p 1995–2002

    Article  CAS  Google Scholar 

  2. T.B. Stoughton and X. Zhu, Review of Theoretical Models of the Strain-Based FLD and Their Relevance to the Stress-Based FLD, Int. J. Plast, 2004, 20(8), p 1463–1486

    Article  Google Scholar 

  3. M. Darrieulat and F. Montheillet, Extension of the Hill (1948) yield criterion to the case of prismatic monoclinic symmetry, Int. J. Mech. Sci., 1996, 38(12), p 1273–1284

    Article  Google Scholar 

  4. G. Sainath, B.K. Choudhary, J. Christopher, E. Isaac Samuel, and M.D. Mathew, Applicability of Voce Equation for Tensile Flow and Work Hardening Behaviour of P92 Ferritic Steel, Int. J. Press. Vessels Pip., 2015, 132–133, p 1–9

    Article  CAS  Google Scholar 

  5. J.E. Hockett and O.D. Sherby, Large Strain Deformation of Polycrystalline Metals at Low Homologous Temperatures, J. Mech. Phys. Solids, 1975, 23(2), p 87–98

    Article  CAS  Google Scholar 

  6. I.Y. Straume and V.I. Prosvirin, Investigation of the Wedge Pressure (Ludwik) Method of Testing Certain Plastics, Polym. Mech., 1971, 7(2), p 330–332

    Article  Google Scholar 

  7. H.W. Swift, Plastic Instability Under Plane Stress, J. Mech. Phys. Solids, 1952, 1(1), p 1–18

    Article  Google Scholar 

  8. A.K. Ghosh, The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol., 1977, 99(3), p 264

    Article  CAS  Google Scholar 

  9. F. Djavanroodi, M. Ebrahimi, and M. Janbakhsh, A Study on the Stretching Potential, Anisotropy Behavior and Mechanical Properties of AA7075 and Ti-6Al-4 V Alloys Using Forming Limit Diagram: An Experimental, Numerical and Theoretical Approaches, Results Phys., 2019, 14, p 102496

    Article  Google Scholar 

  10. J. He, Y. Li, B. Gu, and S. Li, Effects of Reverse Loading on Forming Limit Predictions with Distortional Anisotropic Hardening Under Associated and Non-associated Flow Rules, Int. J. Mech. Sci., 2019, 156, p 446–461

    Article  Google Scholar 

  11. J. He, D. Zeng, X. Zhu, Z. Cedric Xia, and S. Li, Effect of Nonlinear Strain Paths on Forming Limits Under Isotropic and Anisotropic Hardening, Int. J. Solids Struct., 2014, 51(2), p 402–415

    Article  Google Scholar 

  12. R. Schneider, R.J. Grant, N. Sotirov, G. Falkinger, F. Grabner, C. Reichl, M. Scheerer, B. Heine, and Z. Zouaoui, Constitutive Flow Curve Approximation of Commercial Aluminium Alloys at Low Temperatures, Mater. Des., 2015, 88, p 659–666

    Article  CAS  Google Scholar 

  13. Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9(9), p 609–620

    Article  Google Scholar 

  14. P. Hora, L. Tong, and B. Berisha, Modified Maximum Force Criterion, a Model for the Theoretical Prediction of Forming Limit Curves, Int. J. Mater. Form., 2013, 6(2), p 267–279

    Article  Google Scholar 

  15. Y. Wang, C. Zhang, Y. Yang, S. Fan, G. Wang, G. Zhao, and L. Chen, The Integration of Through-Thickness Normal Stress and Friction Stress in the M–K Model to Improve the Accuracy of Predicted FLCs, Int. J. Plast, 2019, 120, p 147–163

    Article  Google Scholar 

  16. B.L. Ma, M. Wan, Z.Y. Cai, W.N. Yuan, C. Li, X.D. Wu, and W. Liu, Investigation on the Forming Limits of 5754-O Aluminum Alloy Sheet with the Numerical Marciniak–Kuczynski Approach, Int. J. Mech. Sci., 2018, 142–143, p 420–431

    Article  Google Scholar 

  17. Q. Hu, X. Li, and J. Chen, New Robust Algorithms for Marciniak–Kuczynski Model to Calculate the Forming Limit Diagrams, Int. J. Mech. Sci., 2018, 148, p 293–306

    Article  Google Scholar 

  18. J. Lian, F. Shen, X. Jia, D.-C. Ahn, D.-C. Chae, S. Münstermann, and W. Bleck, An Evolving Non-associated Hill48 Plasticity Model Accounting for Anisotropic Hardening and r-value Evolution and Its Application to Forming Limit Prediction, Int. J. Solids Struct., 2018, 151, p 20–44

    Article  Google Scholar 

  19. Q.-T. Pham, B.-H. Lee, K.-C. Park, and Y.-S. Kim, Influence of the Post-necking Prediction of Hardening Law on the Theoretical Forming Limit Curve of Aluminium Sheets, Int. J. Mech. Sci., 2018, 140, p 521–536

    Article  Google Scholar 

  20. K. Jawale, J.F. Duarte, A. Reis, and M.B. Silva, Characterizing Fracture Forming Limit and Shear Fracture Forming Limit for Sheet Metals, J. Mater. Process. Technol., 2018, 255, p 886–897

    Article  Google Scholar 

  21. J.P. Magrinho, M.B. Silva, G. Centeno, F. Moedas, C. Vallellano, and P.A.F. Martins, On the Determination of Forming Limits in Thin-Walled Tubes, Int. J. Mech. Sci., 2019, 155, p 381–391

    Article  Google Scholar 

  22. Q. Hu, X. Li, and J. Chen, Forming Limit Evaluation by Considering Through-Thickness Normal Stress: Theory and Modeling, Int. J. Mech. Sci., 2019, 155, p 187–196

    Article  Google Scholar 

  23. B.L. Ma, M. Wan, H. Zhang, X.L. Gong, and X.D. Wu, Evaluation of the Forming Limit Curve of Medium Steel Plate Based on Non-constant Through-Thickness Normal Stress, J. Manuf. Process., 2018, 33, p 175–183

    Article  Google Scholar 

  24. N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, and M.H. Seo, Fracture-Based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast, 2017, 96, p 1–35

    Article  Google Scholar 

  25. S.B. Kim, H. Huh, H.H. Bok, and M.B. Moon, Forming Limit Diagram of Auto-Body Steel Sheets for High-Speed Sheet Metal Forming, J. Mater. Process. Technol., 2011, 211(5), p 851–862

    Article  CAS  Google Scholar 

  26. S. Bruschi, T. Altan, D. Banabic, P.F. Bariani, A. Brosius, J. Cao, A. Ghiotti, M. Khraisheh, M. Merklein, and A.E. Tekkaya, Testing and Modelling of Material Behaviour and Formability in Sheet Metal Forming, CIRP Ann. Manuf. Technol., 2014, 63(2), p 727–749

    Article  Google Scholar 

  27. J. Chen, P. Gong, and L. Yang, Forming Limit Evaluation for AA5182 Aluminum Alloy at Warm Temperatures Based on M–K Model, J. Mater. Eng. Perform., 2020, 29, p 1176–1184

    Article  CAS  Google Scholar 

  28. M. Kawka and A. Makinouchi, Plastic Anisotropy in FEM Analysis Using Degenerated Solid Element, J. Mater. Process. Technol., 1996, 60(1), p 239–242

    Article  Google Scholar 

  29. H. Kim, J.H. Sung, R. Sivakumar, and T. Altan, Evaluation of Stamping Lubricants Using the Deep Drawing Test, Int. J. Mach. Tool Manuf., 2007, 47(14), p 2120–2132

    Article  Google Scholar 

  30. T. Sangkharat and S. Dechjarern, Using Image Processing on Erichsen Cup Test Machine to Calculate Anisotropic Property of Sheet Metal, Proc. Manuf., 2019, 29, p 390–397

    Google Scholar 

  31. S. Basak, S.K. Panda, and M.-G. Lee, Formability and Fracture in Deep Drawing Sheet Metals: Extended Studies for Pre-strained Anisotropic Thin Sheets, Int. J. Mech. Sci., 2020, 170, p 105346

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Liu, Z., Wan, M. et al. An Investigation on Anisotropy Behavior and Forming Limit of 5182-H111 Aluminum Alloy. J. of Materi Eng and Perform 29, 3745–3756 (2020). https://doi.org/10.1007/s11665-020-04879-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04879-7

Keywords

Navigation