Skip to main content

Advertisement

Log in

Compressive Behavior of 7075 Al-SiO2 Waste Particle Composite Foams Produced with Recycled Aluminum Cans

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

7075 Al-SiO2 composite foams were successfully produced by using low-cost materials, including as-received pressed blocks of recycled beverage aluminum cans and silica waste particles as a reinforcement and thickening agent. The composite foams were produced by using direct foaming of melt method. Different percentages of foaming agent and SiO2 particles were used to optimize the properties of the produced foams. The compressive behavior at different strain rates of the composite foams was investigated. At all strain rates studied in the present work, the addition of SiO2 particles into 7075 Al foam considerably enhanced the compressive properties of the composite foams, including the compressive plastic stress, plateau stress, modulus of elasticity, normalized modulus, energy absorption and energy absorbing efficiency without increasing in the relative density of the foams. The compressive properties of the composite foam produced by using low-cost materials, in the present work, are comparable or higher than those of the aluminum alloy foams reported in the literature. The composite foams exhibited higher strain hardening exponents in comparison with those of the 7075 Al foams, indicating that a strong interfacial bond between 7075 Al alloy and SiO2 particles was developed. The compressive plastic stress and plateau stress of the investigated foams exhibited a significant sensitivity to altering the strain rate, even at low and narrow range of strain rate used in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford, 2000

    Google Scholar 

  2. K. Yang, X. Yang, E. Liu, C. Shi, L. Ma, C. He, Q. Li, J. Li, and N. Zhao, High Strain Rate Dynamic Compressive Properties and Deformation Behavior of Al Matrix Composite Foams Reinforced by In Situ Grown Carbon Nanotubes, Materials Science and Engineering: A, 2018, 729, p 487–495. https://doi.org/10.1016/j.msea.2017.09.011

    Article  CAS  Google Scholar 

  3. I. Duart and J.M.F. Ferreira, Composite and Nanocomposite Metal Foams, Materials, 2016, 9, p 79–113. https://doi.org/10.3390/ma9020079

    Article  CAS  Google Scholar 

  4. Y. Du, A.B. Li, X.X. Zhang, Z.B. Tan, R.Z. Su, F. Pu, and L. Geng, Enhancement of the Mechanical Strength of Aluminum Foams by SiC Nanoparticles, Mater. Lett., 2015, 148, p 79–81. https://doi.org/10.1016/j.matlet.2015.02.066

    Article  CAS  Google Scholar 

  5. D.K. Rajak, N.N. Mahajan, and S. Das, Fabrication and Investigation of Influence of CaCO3 as Foaming Agent on Al-SiCp Foam, Mater. Manuf. Process., 2018, 33(16), p 379–384. https://doi.org/10.1080/10426914.2018.1532093

    Article  CAS  Google Scholar 

  6. S. Vignesh, C. LakshmanaRao, S. Bade, Energy Absorption Characteristics of AA7075-T6 Tube Filled with Aluminum Foam, Advances in Structural Integrity, R. Prakash et al., Ed., Springer, Singapore, 2018, p 303–3013 https://doi.org/10.1007/978-981-10-7197-3_26

    Chapter  Google Scholar 

  7. D. Yang, J. Chen, L. Wang, J. Jiang, and A. Ma, Fabrication of Al Foam Without Thickening Process Through Melt-Foaming Method, J. Iron Steel Res. Int., 2018, 25, p 90–98. https://doi.org/10.1007/s42243-017-0011-1

    Article  Google Scholar 

  8. S. Yu, Y. Luo, and J. Liu, Effects of Strain Rate and SiC Particle on the Compressive Property of SiCp/AlSi9 Mg Composite Foams, Mater. Sci. Eng., A, 2008, 487, p 394–399. https://doi.org/10.1016/j.msea.2007.11.025

    Article  CAS  Google Scholar 

  9. N.V.R. Kumar, N.R. Rao, B. Sudhakar, and A.A. Gokhale, Foaming Experiments on LM25 Alloy Reinforced with SiC Particulates, Mater. Sci. Eng. A, 2010, 527, p 6082–6090. https://doi.org/10.1016/j.msea.2010.06.024

    Article  CAS  Google Scholar 

  10. U.A. Atturan, S.H. Nandam, B.S. Murty, and S. Sankaran, Deformation Behavior of In Situ TiB2 Reinforced A357 Aluminum Alloy Composite Foams Under Compressive and Impact Loading, Mater. Sci. Eng. A, 2017, 684, p 178–185. https://doi.org/10.1016/j.msea.2016.12.048

    Article  CAS  Google Scholar 

  11. S. Bhogia, J. Nampoothirib, K.R. Ravib, and M. Mukherjee, Influence of Nano and Micro Particles on the Expansion and Mechanical, Properties of Aluminum Foams, Mater. Sci. Eng. A, 2017, 685, p 131–138. https://doi.org/10.1016/j.msea.2016.12.127

    Article  CAS  Google Scholar 

  12. J. Banhart, Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  13. E. Kozaa, M. Leonowicz, S. Wojciechowski, and F. Simancik, Compressive Strength of Aluminum Foams, Mater. Lett., 2003, 58, p 132–135. https://doi.org/10.1016/S0167-577X(03)00430-0

    Article  CAS  Google Scholar 

  14. A.E. Markaki and T.W. Clyne, The Effect of Cell Wall Microstructure on the Deformation and Fracture of Aluminum-Based Foams, Acta Mater., 2001, 49, p 1677–1686. https://doi.org/10.1016/S1359-6454(01)00072-6

    Article  CAS  Google Scholar 

  15. Y. Luo, S. Yu, W. Li, J. Liu, and M. Wei, Compressive Behavior of SiCp/AlSi9Mg Composite Foams, J. Alloys Compd., 2008, 460, p 294–298. https://doi.org/10.1016/j.jallcom.2007.06.041

    Article  CAS  Google Scholar 

  16. T. Fukui, M. Saito, Y. Nonaka, and S. Suzuki, Fabrication of Foams of A2024 and A7075 and Influence of Porosity and Heat Treatment on Their Mechanical Properties, Trans. JSME Trans. JSME, 2014, 80, p 1–9. https://doi.org/10.1299/transjsme.2014smm0248

    Article  CAS  Google Scholar 

  17. P.H. Thornton and C.L. Magee, The Deformation of Aluminum Foams, Metall. Trans. A, 1975, 6, p 1253–1263. https://doi.org/10.1007/BF02658535

    Article  Google Scholar 

  18. R.E. Raj and B.S.S. Daniel, Aluminum Melt Foam Processing for Light-Weight Structures, Mater. Manuf. Process., 2007, 22, p 525–530. https://doi.org/10.1080/10426910701236072

    Article  CAS  Google Scholar 

  19. M.G. Nava, A. Cruz-Ramírez, M.A.S. Rosales, V.H. Gutierrez-Perez, and A. Sanchez-Martínez, Fabrication of Aluminum Alloy Foams by Using Alternative Thickening Agents Via Melt Route, J. Alloys Compd., 2017, 698, p 1009–1017. https://doi.org/10.1016/j.jallcom.2016.12.170

    Article  CAS  Google Scholar 

  20. A.V. Byakova, S.V. Gnyloskurenko, A.I. Sirko, Y.V. Milman, and T. Nakamura, The Role of Foaming Agent in Structure and Mechanical Performance of Al Based Foams, Mater. Trans., 2006, 47(9), p 2131–2136

    Article  CAS  Google Scholar 

  21. M. Haesche, D. Lehmhus, J. Weise, M. Wichmann, I. Cristina, and M. Mocellin, Carbonates as Foaming Agent in Chip-Based Aluminum Foam Precursor, J. Mater. Sci. Technol., 2010, 26, p 845–850. https://doi.org/10.1016/S1005-0302(10)60135-1

    Article  CAS  Google Scholar 

  22. R.M. Aikin, Jr, and L. Christodoulou, The Role of Equiaxed Particles on the Yield Stress of Composites, Scr. Metall. Mater., 1991, 2, p 9–14. https://doi.org/10.1016/0956-716X(91)90345-2

    Article  Google Scholar 

  23. M. Taya, K.E. Lulay, and D.J. Lloyd, Strengthening of a Particulate Metal Matrix Composite by Quenching, Acta Metall. Mater., 1991, 39, p 73–87. https://doi.org/10.1016/0956-7151(91)90329-Y

    Article  CAS  Google Scholar 

  24. W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Metall. Mater., 1991, 25, p 33–38. https://doi.org/10.1016/0956-716X(91)90349-6

    Article  CAS  Google Scholar 

  25. A.P. Roberts and E.J. Garboczi, Elastic Moduli of Model Random Three Dimensional Closed-Cell Cellular Solids, Acta Mater., 2001, 49, p 189–197. https://doi.org/10.1016/S1359-6454(00)00314-1

    Article  CAS  Google Scholar 

  26. A. Paul and U. Ramamurty, Strain Rate Sensitivity of a Closed-Cell Aluminum Foam, Mater. Sci. Eng. A, 2000, 281, p 1–7. https://doi.org/10.1016/S0921-5093(99)00750-9

    Article  Google Scholar 

  27. A. Daoud, Effect of Strain Rate on Compressive Properties of novel Zn12Al Based Composite Foams Containing Hybrid Pores, Mater. Sci. Eng. A, 2009, 525, p 7–17. https://doi.org/10.1016/j.msea.2009.05.038

    Article  CAS  Google Scholar 

  28. R.J. Arsenault, The Strengthening of Aluminum Alloy 6061 by Fiber and Platelet Silicon Carbide, Mater. Sci. Eng., 1984, 64, p 171–181. https://doi.org/10.1016/0025-5416(84)90101-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No. 25243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Daoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, A., Abou El-Khair, M.T., Fairouz, F. et al. Compressive Behavior of 7075 Al-SiO2 Waste Particle Composite Foams Produced with Recycled Aluminum Cans. J. of Materi Eng and Perform 29, 2978–2990 (2020). https://doi.org/10.1007/s11665-020-04858-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04858-y

Keywords

Navigation