Skip to main content
Log in

Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Low-cycle fatigue and creep-fatigue tests were conducted at 815 °C on laser-welded, selective laser melted (SLM) Inconel 625 test specimens. The results showed that the microstructure of the welding zone was mainly composed of columnar dendrites, which grew epitaxially from the weld line and exhibited better fatigue and durability resistance than the non-welded SLM alloy. The low-cycle fatigue life and creep-fatigue life decreased with increasing test stress. Both fatigue and creep-fatigue properties were better for laser-welded SLM Inconel 625 specimens than non-welded specimens. High-density intergranular cracks formed in the \(\gamma\) matrix at base material, which contained many intergranular precipitates. Precipitation of intermetallic \(\delta\), \(\gamma^{\prime\prime}\), and the intergranular carbides was responsible for the higher hardness of the fatigue and creep-fatigue specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.A. Badrish, N. Kotkunde, G. Mahalle, S.K. Singh, and K. Mahesh, Analysis of Hot Anisotropic Tensile Flow Stress and Strain Hardening Behavior for Inconel 625 Alloy, J. Mater. Eng. Perform., 2019, 28(12), p 7537–7553

    Article  CAS  Google Scholar 

  2. C.A. Badrish, N. Kotkunde, O. Salunke, and S. Kumar Singh, Study of Anisotropic Material Behavior for Inconel 625 Alloy at Elevated Temperatures, Mater. Today Proc., 2019, 18, p 2760–2766

    Article  CAS  Google Scholar 

  3. V. Shankar, K.B.S. Rao, and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nucl. Mater., 2001, 288(2), p 222–232

    Article  CAS  Google Scholar 

  4. K. Inaekyan, A. Kreitcberg, S. Turenne, and V. Brailovski, Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy, Mater. Sci. Eng. A, 2019, 768, p 138481

    Article  CAS  Google Scholar 

  5. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting, Prog. Mater Sci., 2019, 106, p 100578

    Article  CAS  Google Scholar 

  6. J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35(2), p 270–284

    Article  Google Scholar 

  7. L. Xi, S. Chen, M. Wei, J. Liang, C. Liu, and M. Wang, Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2019, 28(9), p 5521–5532

    Article  CAS  Google Scholar 

  8. G. Dursun, S. Ibekwe, G. Li, P. Mensah, G. Joshi, and D. Jerro, Influence of Laser Processing Parameters on the Surface Characteristics of 316L Stainless Steel Manufactured by Selective Laser Melting, Mater. Today: Proc. 2020 (in press) https://doi.org/10.1016/j.matpr.2019.12.061

  9. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4 V: A Review, Int. J. Mach. Tool. Manu., 2018, 128, p 1–20

    Article  Google Scholar 

  10. L. Zhou, T. Yuan, J. Tang, J. He, and R. Li, Mechanical and Corrosion Behavior of Titanium Alloys Additively Manufactured by Selective Laser Melting—A Comparison Between Nearly β Titanium, α Titanium and α + β Titanium, Opt. Laser Technol., 2019, 119, p 105625

    Article  CAS  Google Scholar 

  11. G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28(4), p 1942–1949

    Article  CAS  Google Scholar 

  12. S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, J. Cormier, and R. Leroy, Machining Influence on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Proc. Struct. Integr., 2019, 19, p 415–422

    Article  Google Scholar 

  13. C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431

    CAS  Google Scholar 

  14. X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi, and X. Yang, Laser Welding of a Selective Laser Melted Ni-base Superalloy: Microstructure and High Temperature Mechanical Property, Mater. Sci. Eng., A, 2019, 745, p 335–345

    Article  CAS  Google Scholar 

  15. S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952

    Article  CAS  Google Scholar 

  16. P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei, and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Design., 2016, 112, p 290–299

    Article  CAS  Google Scholar 

  17. L. Chao, R. White, X.Y. Fang, M. Weaver, and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng., A, 2017, 705, p 20–31

    Article  Google Scholar 

  18. J.P. Oliveira, T.G. Santos, and R.M. Miranda, Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice, Prog. Mater Sci., 2020, 107, p 100590

    Article  Google Scholar 

  19. K.D. Ramkumar, S.G. Pattapu, S. Vangaveeti, K. Kothari, R. Sridhar, N. Arivazhagan, and P. Kuppan, Studies on Microstructure and Mechanical Properties of Keyhole Mode Nd:YAG Laser Welded Inconel 625 and Duplex Stainless Steel, SAF 2205, J. Mater. Res., 2015, 30, p 1–11

    Google Scholar 

  20. Y.S. Park, J.J. Choi, and D.H. Bae, Fracture Mechanical Assessment of the Corrosion Fatigue Characteristics at the Low Fatigue Limit of a Multi-pass Welded Ni-based Alloy 617, Procedia Mater. Sci., 2014, 3, p 1530–1535

    Article  CAS  Google Scholar 

  21. K.G. Kumar, K.D. Ramkumar, and N. Arivazhagan, Characterization of Metallurgical and Mechanical Properties on the Multi-pass Welding of Inconel 625 and AISI, 316L, J. Mech. Sci. Technol., 2015, 29(3), p 1039–1047

    Article  Google Scholar 

  22. C.A. Biffi, J. Fiocchi, and A. Tuissi, Laser Weldability of AlSi10Mg Alloy Produced by Selective Laser Melting: Microstructure and Mechanical Behavior, J. Mater. Eng. Perform., 2019, 28(11), p 6714–6719

    Article  CAS  Google Scholar 

  23. F. Caiazzo, V. Alfieri, F. Cardaropoli, and V. Sergi, Investigation on Edge Joints of Inconel 625 Sheets Processed with Laser Welding, Opt. Laser Technol., 2017, 93, p 180–186

    Article  CAS  Google Scholar 

  24. J.R. Poulin, A. Kreitcberg, P. Terriault, and V. Brailovski, Fatigue Strength Prediction of Laser Powder Bed Fusion Processed Inconel 625 Specimens with Intentionally-Seeded Porosity: Feasibility Study, Int. J. Fatigue, 2020, 132, p 105394

    Article  Google Scholar 

  25. M. Tang and P.C. Pistorius, Fatigue Life Prediction for AlSi10Mg Components Produced by Selective Laser Melting, Int. J. Fatigue, 2019, 125, p 479–490

    Article  CAS  Google Scholar 

  26. G. Qian, Z. Jian, X. Pan, and F. Berto, In-situ Investigation on Fatigue Behaviors of Ti-6Al-4 V Manufactured by Selective Laser Melting, Int. J. Fatigue, 2020, 133, p 105424

    Article  Google Scholar 

  27. Y. Wu and R. Bao, Fatigue Crack Tip Strain Evolution and Crack Growth Prediction Under Single Overload in Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Int. J. Fatigue, 2018, 116, p 462–472

    Article  CAS  Google Scholar 

  28. M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, and A. Erratum, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68(5), p 1492

    Article  Google Scholar 

  29. M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J.J. Lewandowski, Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification, JOM, 2017, 69(3), p 439–455

    Article  Google Scholar 

  30. Q.G. Wang, P.N. Crepeau, C.J. Davidson, and J.R. Griffiths, Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys, Metall. Mater. Trans. B, 2006, 37(6), p 887–895

    Article  Google Scholar 

  31. J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Design, 2017, 128, p 166–175

    Article  CAS  Google Scholar 

  32. Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li, and W.D. Huang, Plastic Deformation Behavior and Dynamic Recrystallization of Inconel 625 Superalloy Fabricated by Directed Energy Deposition, Mater. Design., 2020, 186, p 108359

    Article  Google Scholar 

  33. R.J. Goldstein, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, and S. Garrick, Heat Transfer—A Review of 2000 Literature, Int. J. Heat. Mass. Tran., 2002, 45(14), p 2853–2957

    Article  Google Scholar 

  34. X.A. Hu, G.L. Zhao, Y. Jiang, X.F. Ma, F.C. Liu, J. Huang, and C.L. Dong, Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C, Acta Metall. Sin-Engl., 2019 (in press) https://doi.org/10.1007/s40195-019-00986-0

  35. A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti–6Al–4V, Mater. Sci. Eng., A, 2016, 655, p 100–112

    Article  CAS  Google Scholar 

  36. Z.H. Jiao, L.M. Lei, H.C. Yu, F. Xu, R.D. Xu, and X.R. Wu, Experimental Evaluation on Elevated Temperature Fatigue and Tensile Properties of one Selective Laser Melted Nickel Based Superalloy, Int. J. Fatigue, 2019, 121, p 172–180

    Article  CAS  Google Scholar 

  37. H.H. Shi, J.S. Hou, J.T. Guo, L.Z. Zhou, M. Maldini, G. Angella, R. Donini, and D. Ripamonti, Microstructure Evolution and Its Influence on Deformation Mechanisms During Tensile Creep of DD417G Alloy, Mater. Res. Innov., 2014, 18(S4), p 319–323

    Google Scholar 

  38. A. Epishin and T. Link, Mechanisms of High-Temperature Creep of Nickel-Based Superalloys Under Low Applied Stresses, Philos. Mag., 2004, 84(19), p 1979–2000

    Article  CAS  Google Scholar 

  39. Y.T. Tang, P. Karamched, J. Liu, J.C. Haley, R.C. Reed, and A.J. Wilkinson, Grain Boundary Serration in Nickel Alloy Inconel 600: Quantification and Mechanisms, Acta Mater., 2019, 181, p 352–366

    Article  CAS  Google Scholar 

  40. J.N. DuPont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (DuPont/Welding Metallurgy)|| Appendix D: Etching Techniques for Ni-base Alloys and Welds, 2009, p 419-422, https://doi.org/10.1002/9780470500262.app4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, X. & Jiang, Y. Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method. J. of Materi Eng and Perform 29, 2957–2968 (2020). https://doi.org/10.1007/s11665-020-04844-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04844-4

Keywords

Navigation