Skip to main content

Advertisement

Log in

Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

There has been great attention on high-entropy alloys (HEAs) over the past decade. Unlike conventional alloy systems, HEAs commonly include at least five principal elements with equiatomic or near-equiatomic ratio. HEAs with their superior mechanical, magnetic, and thermal properties are promising materials for critical engineering applications. Medium-entropy alloys (MEAs), which consist of less than five principal elements, have very similar structural features with HEAs such as robust thermodynamic stability and exceptional mechanical performance. The insights of MEAs have not been fully revealed yet. In the present study, novel MEAs (Cu20Ni20Al30Ti30, Cu25Ni25Al25Ti25, Cu34Ni22Al22Ti22, and Cu35Ni25Al20Ti20) have been designed using thermo-physical calculations and Thermo-Calc software. These MEAs were then produced using copper heart arc melting and suction cast into cylindrical rods with 3 mm diameters. X-ray diffraction (XRD), optical microscope (OM), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive spectroscopy (EDS) were used for structural characterization. The corresponding results reveal that the Cu20Ni20Al30Ti30, MEA, consists of a body-centered cubic (BCC-B2) phase with intermetallic compounds (ICs), whereas Cu25Ni25Al25Ti25 has single BCC-B2 phase. When the amounts Cu and Ni are increased, system drives itself toward a face-centered cubic (FCC) structure. A dual BCC and FCC composite Cu35Ni25Al20Ti20 has been detected as the most promising MEA among the others with 820 and 1338 MPa measured yield and compressive strength, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  CAS  Google Scholar 

  2. J.W. Yeh, Recent Progress in High-Entropy Alloys, Annales de Chimie: Science des Materiaux, 2006, 31(6), p 633–648

    CAS  Google Scholar 

  3. Y. Zhang and Y.J. Zhou, Solid Solution Formation Criteria for High Entropy Alloys, Mater. Sci. Forum, 2007, 561–565, p 1337–1339

    Google Scholar 

  4. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538

    CAS  Google Scholar 

  5. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238

    CAS  Google Scholar 

  6. J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759–1771

    CAS  Google Scholar 

  7. C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lın, and S.-Y. Chang, Microstructure Characterization of Al, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893

    Google Scholar 

  8. J. Li, W. Jia, J. Wang, H. Kou, D. Zhang, and E. Beaugnon, Enhanced Mechanical Properties of a CoCrFeNi High Entropy Alloy by Supercooling Method, Mater. Des., 2016, 95, p 183–187

    CAS  Google Scholar 

  9. B.S. Murty, High-Entropy Alloys, Butterworth-Heinemann, Oxford, 2014

    Google Scholar 

  10. H. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, and H. Zhou, MoNbTaV Medium-Entropy Alloy, Entropy, 2016, 18(5), p 1–15

    CAS  Google Scholar 

  11. S. Gorsse, J.P. Couzinié, and D.B. Miracle, From High-Entropy Alloys to Complex Concentrated Alloys, Comptes Rendus Physique, 2018, 19(8), p 721–736

    CAS  Google Scholar 

  12. Y. Yu, J. Wang, J. Li, H. Kou, and W. Liu, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater, Lett., 2015, 138, p 78–80

    CAS  Google Scholar 

  13. S. Guo, Q. Hu, C. Ng, and C.T. Liu, More than Entropy in High-Entropy Alloys: Forming Solid Solutions or Amorphous Phase, Intermetallics, 2013, 41, p 96–103

    Google Scholar 

  14. T.T. Shun, L.Y. Chang, and M.H. Shiu, Microstructure and Mechanical Properties of Multiprincipal Component CoCrFeNiMox Alloys, Mater. Charact., 2012, 70, p 63–67

    CAS  Google Scholar 

  15. M.S. Lucas, L. Mauger, J.A. Muoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, Magnetic and Vibrational Properties of High-Entropy Alloys, J. Appl. Phys., 2011, 109(7), p 107–110

    Google Scholar 

  16. L. Zhang, Y. Zhou, X. Jin, X. Du, and B. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scripta Mater., 2018, 146, p 226–230

    CAS  Google Scholar 

  17. S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra, Contrasting Mechanical Behavior in Precipitation Hardenable Al X CoCrFeNi High Entropy Alloy Microstructures: Single Phase FCC Versus Dual Phase FCC-BCC, Mater. Sci. Eng. A, 2019, 739, p 158–166

    CAS  Google Scholar 

  18. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534(7606), p 227–230

    CAS  Google Scholar 

  19. S. Guo, C. Ng, and C.T. Liu, Anomalous Solidification Microstructures in Co-Free Al XCrCuFeNi2 High-Entropy Alloys, J. Alloys Compd., 2013, 557, p 77–81

    CAS  Google Scholar 

  20. J.M. Park, J. Moon, J.W. Bae, D.H. Kim, Y.H. Jo, S. Lee, and H.S. Kim, Role of BCC Phase on Tensile Behavior of Dual-Phase Al 0.5 CoCrFeMnNi High-Entropy Alloy at Cryogenic Temperature, Mater. Sci. Eng. A, 2019, 746, p 443–447

    CAS  Google Scholar 

  21. K.R. Lim, K.S. Lee, J.S. Lee, J.Y. Kim, H.J. Chang, and Y.S. Na, Dual-Phase High-Entropy Alloys for High-Temperature Structural Applications, J. Alloys Compd., 2017, 728, p 1235–1238

    CAS  Google Scholar 

  22. R. Chen, G. Qin, H. Zheng, L. Wang, Y. Su, Y.L. Chiu, H. Ding, J. Guo, and H. Fu, Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137

    CAS  Google Scholar 

  23. Y.F. Ye, C.T. Liu, and Y. Yang, A Geometric Model for Intrinsic Residual Strain and Phase Stability in High Entropy Alloys, Acta Mater., 2015, 94, p 152–161

    CAS  Google Scholar 

  24. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-component Alloys, Intermetallics, 2014, 53, p 112–119

    CAS  Google Scholar 

  25. Z. Wang, Y. Huang, Y. Yang, J. Wang, and C.T. Liu, Atomic-Size Effect and Solid Solubility of Multicomponent Alloys, Scripta Mater., 2015, 94, p 28–31

    CAS  Google Scholar 

  26. V.K. Soni, S. Sanyal, and S.K. Sinha, Phase Evolution and Mechanical Properties of Novel FeCoNiCuMox High Entropy Alloys, Vacuum, 2019, 2020(174), p 109173

    Google Scholar 

  27. Y. Lu, Y. Dong, L. Jiang, T. Wang, T. Li, and Y. Zhang, A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys, Entropy, 2015, 17(4), p 2355–2366

    CAS  Google Scholar 

  28. Y. Dong, Y. Lu, L. Jiang, T. Wang, and T. Li, Effects of Electro-Negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109

    CAS  Google Scholar 

  29. Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du, and B. Li, Design of Non-Equiatomic Medium-Entropy Alloys, Sci. Rep., 2018, 8(1), p 1236

    Google Scholar 

  30. A. Gali and E.P. George, Tensile Properties of High- and Medium-Entropy Alloys, Intermetallics, 2013, 39, p 74–78

    CAS  Google Scholar 

  31. G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Materialia, 2017, 128, p 292–303

    CAS  Google Scholar 

  32. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, and A. Makino, Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys, Entropy, 2013, 15(9), p 3810–3821

    CAS  Google Scholar 

  33. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Materialia, 2017, 122, p 448–511

    CAS  Google Scholar 

  34. S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys, Data Brief, 2018, 21, p 2664–2678

    CAS  Google Scholar 

  35. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, Relationship between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses, J. Non-Cryst. Solids, 2003, 321(1–2), p 120–125

    CAS  Google Scholar 

  36. A. Kumar, A.K. Swarnakar, A. Basu, and M. Chopkar, Effects of Processing Route on Phase Evolution and Mechanical Properties of CoCrCuFeNiSix High Entropy Alloys, J. Alloys Compd., 2018, 748, p 889–897

    CAS  Google Scholar 

  37. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505

    Google Scholar 

  38. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, and J.A. Hawk, Thermodynamics of Concentrated Solid Solution Alloys, Curr. Opin. Solid State Mater. Sci., 2017, 21(5), p 238–251

    CAS  Google Scholar 

  39. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212

    CAS  Google Scholar 

  40. L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao, and T.J. Li, Formation Rules of Single Phase Solid Solution in High Entropy Alloys, Mater. Sci. Technol. (United Kingdom), 2016, 32(6), p 588–592

    CAS  Google Scholar 

  41. R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18(9), p 16–29

    Google Scholar 

  42. X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata, and M.W. Chen, Effects of Mixing Enthalpy and Cooling Rate on Phase Formation of AlxCoCrCuFeNi High-Entropy Alloys, Materialia, 2019, 6, p 100292

    Google Scholar 

  43. B.S. Murty, J.W. Yeh, S. Ranganathan, B.S. Murty, J.W. Yeh, and S. Ranganathan, Phase Selection in High-Entropy Alloys, High Entropy Alloys, 2014, 3, p 37–56

    Google Scholar 

  44. G. Bizhanova, F. Li, Y. Ma, P. Gong, and X. Wang, Development and Crystallization Kinetics of Novel Near-Equiatomic High-Entropy Bulk Metallic Glasses, J. Alloys Compd., 2019, 779, p 474–486

    CAS  Google Scholar 

  45. S. Tripathy, G. Gupta, and S.G. Chowdhury, High Entropy Alloys: Criteria for Stable Structure, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(1), p 7–17

    CAS  Google Scholar 

  46. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829

    CAS  Google Scholar 

  47. H. Kotan and K.A. Darling, A Study of Microstructural Evolution of Fe-18Cr-8Ni, Fe-17Cr-12Ni, and Fe-20Cr-25Ni Stainless Steels after Mechanical Alloying and Annealing, Mater. Charact., 2018, 138, p 186–194

    CAS  Google Scholar 

  48. W. Li, P.K. Liaw, and Y. Gao, Fracture Resistance of High Entropy Alloys: A Review, Intermetallics, 2018, 99, p 69–83

    CAS  Google Scholar 

  49. M. Seifi, D. Li, Z. Yong, P.K. Liaw, and J.J. Lewandowski, Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys, JOM, 2015, 67(10), p 2288–2295

    CAS  Google Scholar 

  50. Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition, Mater. Res. Lett., 2015, 3(4), p 203–209

    CAS  Google Scholar 

  51. Z. Li, L. Fu, J. Peng, H. Zheng, X. Ji, Y. Sun, S. Ma, and A. Shan, Improving Mechanical Properties of an FCC High-Entropy Alloy by Γ′ and B2 Precipitates Strengthening, Mater. Charact., 2019, 2020(159), p 109989

    Google Scholar 

Download references

Acknowledgment

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 216M058. The authors would like to thank ONATUS Öngörü Teknolojileri Company for the support with the Thermo-Calc software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunus Eren Kalay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, G., Erdal, Z.A. & Kalay, Y.E. Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys. J. of Materi Eng and Perform 29, 2898–2908 (2020). https://doi.org/10.1007/s11665-020-04830-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04830-w

Keywords

Navigation