Skip to main content
Log in

Experimental Investigation on Buckling and Post-buckling Behavior of Superelastic Shape Memory Alloy Bars

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper examines the buckling and post-buckling behavior of superelastic shape memory alloy (SMA) bars. A NiTi SMA bar with a diameter of 12 mm was used in all the experimental tests. First, the tensile and compression responses of NiTi bar were characterized under monotonic loading up to failure. A total of 15 specimens with slenderness ratios that range from 25 to 115 were tested to study the critical buckling load and post-buckling behavior of SMA bars. Digital image correlation (DIC) system was implemented to monitor full-field surface displacements. The interaction between material nonlinearity due to phase transformation and geometric nonlinearity was explored. Data obtained from the DIC measurement system were further analyzed to identify the onset of buckling and to extract experimental critical buckling loads. The effect of loading rate on buckling response of SMAs was investigated by conducting additional testing at higher loading rates on the specimens with three selected slenderness ratios. The temperature field on the surface of the specimens was recorded by an infrared camera. The analytical critical buckling loads were computed and compared with experimental results. All specimens exhibited a unique buckling behavior characterized with almost a complete shape recovery upon unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Mohd Jani, M. Leary, A. Subic, and M. Gibson, A Review of Shape Memory Alloy Research, Applications and Opportunities, Mater. Des., 2014, 1980–2015(56), p 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  2. Y. Zhang and S. Zhu, A Shape Memory Alloy-Based Reusable Hysteretic Damper for Seismic Hazard Mitigation, Smart Mater. Struct., 2007, 16(5), p 1603–1613. https://doi.org/10.1088/0964-1726/16/5/014

    Article  Google Scholar 

  3. M. Speicher, R. DesRoches, and R. Leon, Experimental Results of a NiTi Shape Memory Alloy (SMA)-Based Recentering Beam-Column Connection, Eng. Struct., 2011, 33(9), p 2448–2457. https://doi.org/10.1016/j.engstruct.2011.04.018

    Article  Google Scholar 

  4. B. Silwal, R. Michael, and O. Ozbulut, A Superelastic Viscous Damper for Enhanced Seismic Performance of Steel Moment Frames, Eng. Struct., 2015, 105, p 152–164. https://doi.org/10.1016/j.engstruct.2015.10.005

    Article  Google Scholar 

  5. H. Soul and A. Yawny, Self-Centering and Damping Capabilities of a Tension-Compression Device Equipped with Superelastic NiTi Wires, Smart Mater. Struct., 2015, 24(7), p 075005. https://doi.org/10.1088/0964-1726/24/7/075005

    Article  CAS  Google Scholar 

  6. M. Youssef, M. Alam, and M. Nehdi, Experimental Investigation on the Seismic Behavior of Beam-Column Joints Reinforced with Superelastic Shape Memory Alloys, J. Earthq. Eng., 2008, 12(7), p 1205–1222. https://doi.org/10.1080/13632460802003082

    Article  Google Scholar 

  7. J. Pereiro-Barceló, J. Bonet, B. Cabañero-Escudero, and B. Martínez-Jaén, Cyclic Behavior of Hybrid RC Columns Using High-Performance Fiber-Reinforced Concrete and Ni-Ti SMA Bars in Critical Regions, Compos. Struct., 2019, 212, p 207–219. https://doi.org/10.1016/j.compstruct.2019.01.029

    Article  Google Scholar 

  8. J. Pereiro-Barceló, J. Bonet, S. Gómez-Portillo, and C. Castro-Bugallo, Ductility of High-Performance Concrete and Very-High-Performance Concrete Elements with Ni-Ti Reinforcements, Constr. Build. Mater., 2018, 175, p 531–551. https://doi.org/10.1016/j.conbuildmat.2018.04.172

    Article  CAS  Google Scholar 

  9. M.S. Speicher, R. DesRoches, and R.T. Leon, Experimental results of a NiTi Shape Memory Alloy (SMA)-Based Recentering Beam-Column Connection, Eng. Struct., 2011, 33, p 2448–2457

    Article  Google Scholar 

  10. K. Shrestha, Y. Araki, T. Nagae, Y. Koetaka, Y. Suzuki, T. Omori et al., Feasibility of Cu–Al–Mn Superelastic Alloy Bars as Reinforcement Elements in Concrete Beams, Smart Mater. Struct., 2013, 22(2), p 025025. https://doi.org/10.1088/0964-1726/22/2/025025

    Article  CAS  Google Scholar 

  11. M. Tazarv and M. Saiid Saiidi, Reinforcing NiTi Superelastic SMA for Concrete Structures, J. Struct. Eng., 2015, 141(8), p 04014197. https://doi.org/10.1061/(asce)st.1943-541x.0001176

    Article  Google Scholar 

  12. G.C. Tsiatas, I.N. Tsiptsis, and A.G. Siokas, Nonlinear Buckling and Post-buckling of Shape Memory Alloy Shallow Arches, J Appl Comput Mech, 2019, 6(3), p 665–683. https://doi.org/10.22055/jacm.2019.31795.1918

    Article  Google Scholar 

  13. O. Ozbulut, R. Hamilton, M. Sherif, and A. Lanba, Feasibility of Self-pre-stressing Concrete Members Using Shape Memory Alloys, J Intell Mater Syst Struct, 2015, 26(18), p 2500–2514. https://doi.org/10.1177/1045389x15604405

    Article  CAS  Google Scholar 

  14. M. Sherif, J. Tanks, and O. Ozbulut, Acoustic Emission Analysis of Cyclically Loaded Superelastic Shape Memory Alloy Fiber Reinforced Mortar Beams, Cem. Concr. Res., 2017, 95, p 178–187. https://doi.org/10.1016/j.cemconres.2017.02.021

    Article  CAS  Google Scholar 

  15. O. Ozbulut and S. Hurlebaus, Energy-Balance Assessment of Shape Memory Alloy-Based Seismic Isolation Devices, Smart Struct. Syst., 2011, 8(4), p 399–412. https://doi.org/10.12989/sss.2011.8.4.399

    Article  Google Scholar 

  16. H. Li, M. Liu, and X. Fu, An Innovative Re-centering SMA-Lead Damper and Its Application to Steel Frame Structures, Smart Mater. Struct., 2018, 27(7), p 075029. https://doi.org/10.1088/1361-665x/aac28f

    Article  CAS  Google Scholar 

  17. D. Miller, L. Fahnestock, and M. Eatherton, Development and Experimental Validation of a Nickel–Titanium Shape Memory Alloy Self-Centering Buckling-Restrained Brace, Eng. Struct., 2012, 40, p 288–298. https://doi.org/10.1016/j.engstruct.2012.02.037

    Article  Google Scholar 

  18. C. Qiu and S. Zhu, Performance-Based Seismic Design of Self-Centering Steel Frames with SMA-Based Braces, Eng. Struct., 2017, 130, p 67–82. https://doi.org/10.1016/j.engstruct.2016.09.051

    Article  Google Scholar 

  19. H. Abou-Elfath, Evaluating the Ductility Characteristics of Self-Centering Buckling-Restrained Shape Memory Alloy Braces, Smart Mater. Struct., 2017, 26(5), p 055020. https://doi.org/10.1088/1361-665x/aa6abc

    Article  CAS  Google Scholar 

  20. O. Ozbulut, S. Hurlebaus, and R. Desroches, Seismic Response Control Using Shape Memory Alloys: A Review, J. Intell. Mater. Syst. Struct., 2011, 22(14), p 1531–1549

    Article  Google Scholar 

  21. M. Dolce and D. Cardone, Mechanical Behavior of Shape Memory Alloys for Seismic Applications 2. Austenite NiTi Wires Subjected to Tension, Int J Mech Sci, 2001, 43(11), p 2657–2677

    Article  Google Scholar 

  22. B. Carboni, W. Lacarbonara, and F. Auricchio, Hysteresis of Multiconfiguration Assemblies of Nitinol and Steel Strands: Experiments and Phenomenological Identification, J Eng Mech, 2015, 141(3), p 04014135

    Article  Google Scholar 

  23. Y. Xiao, P. Zeng, and L. Lei, Experimental Investigation on Local Mechanical Response of Superelastic NiTi Shape Memory Alloy, Smart Mater. Struct., 2015, 25(1), p 017002

    Article  Google Scholar 

  24. R. DesRoches, J. McCormick, and M. Delemont, Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars, J. Struct. Eng., 2004, 130(1), p 38–46

    Article  Google Scholar 

  25. O. Ozbulut, S. Daghash, and M. Sherif, Shape Memory Alloy Cables for Structural Applications, J. Mater. Civ. Eng., 2016, 28(4), p 04015176

    Article  Google Scholar 

  26. C. Fang, M. Yam, H. Ma, and K. Chung, Tests on Superelastic Ni–Ti SMA Bars Under Cyclic Tension and Direct-Shear: Towards Practical Recentring Connections, Mater. Struct., 2013, 48(4), p 1013–1030

    Article  Google Scholar 

  27. W. Wang, C. Fang, and J. Liu, Large Size Superelastic SMA Bars: Heat Treatment Strategy, Mechanical Property and Seismic Application, Smart Mater. Struct., 2016, 25(7), p 075001. https://doi.org/10.1088/0964-1726/25/7/075001

    Article  CAS  Google Scholar 

  28. M. Rahman, J. Qiu, and J. Tani, Buckling and Postbuckling Characteristics of the Superelastic SMA Columns, Int. J. Solids Struct., 2001, 38(50–51), p 9253–9265

    Article  Google Scholar 

  29. J. Pereiro-Barceló and J. Bonet, Ni-Ti SMA Bars Behavior Under Compression, Constr. Build. Mater., 2017, 155, p 348–362

    Article  Google Scholar 

  30. R. Watkins, B. Reedlunn, S. Daly, and J. Shaw, Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes, Int. J. Solids Struct., 2018, 146, p 1–28. https://doi.org/10.1016/j.ijsolstr.2018.01.037

    Article  CAS  Google Scholar 

  31. R.T. Watkins and J.A. Shaw, Unbuckling of Superelastic Shape Memory Alloy Columns, J. Intell. Mater. Syst. Struct., 2018, 29(7), p 1360–1378

    Article  CAS  Google Scholar 

  32. Test Method for Tension Testing of Nickel-Titanium Superelastic Materials. (2016). ASTM F2516-18. https://doi.org/10.1520/f2516-18

  33. Correlated Solutions. (2010). ViC 3D

  34. L. Orgéas and D. Favier, Stress-Induced Martensitic Transformation of a NiTi Alloy in Isothermal Shear, Tension and Compression, Acta Mater., 1998, 46(15), p 5579–5591

    Article  Google Scholar 

  35. K. Gall, The Role of Texture in Tension–Compression Asymmetry in Polycrystalline NiTi, Int. J. Plast., 1999, 15(1), p 69–92

    Article  CAS  Google Scholar 

  36. J. Shaw, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, 1995, 43(8), p 1243–1281

    Article  CAS  Google Scholar 

  37. J. Shaw and S. Kyriakides, On the Nucleation and Propagation of Phase Transformation Fronts in a NiTi Alloy, Acta Mater., 1997, 45(2), p 683–700

    Article  CAS  Google Scholar 

  38. B. Reedlunn, C. Churchill, E. Nelson, J. Shaw, and S. Daly, Tension, Compression, and Bending of Superelastic Shape Memory Alloy Tubes, J. Mech. Phys. Solids, 2014, 63, p 506–537

    Article  CAS  Google Scholar 

  39. Z. Li, The Initiation and Growth of Macroscopic Martensite Band in Nano-grained NiTi Microtube Under Tension, Int. J. Plast., 2002, 18(11), p 1481–1498

    Article  CAS  Google Scholar 

  40. S. Daghash and O. Ozbulut, Tensile and Fatigue Behavior of Polymer Composites Reinforced with Superelastic SMA Strands, Smart Mater. Struct., 2018, 27(6), p 065003. https://doi.org/10.1088/1361-665x/aabcb1

    Article  CAS  Google Scholar 

  41. G. Hunt and J. Thompson, Collapse, the Buckling of Structures in Theory and Practice, Cambridge Cambridgeshire, New York, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedebrhan M. Asfaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfaw, A.M., Sherif, M.M., Xing, G. et al. Experimental Investigation on Buckling and Post-buckling Behavior of Superelastic Shape Memory Alloy Bars. J. of Materi Eng and Perform 29, 3127–3140 (2020). https://doi.org/10.1007/s11665-020-04815-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04815-9

Keywords

Navigation