Skip to main content
Log in

Cavitation Erosion Damage Mechanism of a Duplex Stainless Steel Having a Ferrite-Austenite-Sigma-Phase Triplex Microstructure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper is on the cavitation erosion (CE) behavior of a thermally annealed duplex stainless steel having a triplex microstructure consisting of ferrite, austenite and sigma phase. As sigma forms, it siphons off alloying elements from ferrite, making it softer. Ferrite is the weakest against CE among the three phases, and its interfaces with sigma phase are often the initiation sites of damage which tends to grow into the ferrite side. The weakness of ferrite stems from its high strain-rate sensitivity. Austenite is beneficial because it helps to prevent sigma phase from being dislodged, and its interfaces with sigma phase are also more resistant to CE damage. Mechanical properties such as hardness and strength do not correlate with CE resistance (as measured by cumulative weight loss and the incubation time of CE damage). Preliminary results show that cumulative weight loss is not monotonically proportional to the quantity of sigma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Ferreno, J.A. Alvarez, E. Ruiz, D. Mendez, L. Rodriguez, and D. Hernandez, Failure Analysis of a Pelton Turbine Manufactured in Soft Martensitic Stainless Steel Casting, Eng. Fail. Anal., 2011, 18(1), p 256–270

    Article  CAS  Google Scholar 

  2. R. Singh, S.K. Tiwari, and S.K. Mishra, Cavitation Erosion In Hydraulic Turbine Components and Mitigation By Coatings: Current Status and Future Needs, J. Mater. Eng. Perform., 2012, 21(7), p 1539–1551

    Article  CAS  Google Scholar 

  3. K. Selvam, P. Mandal, H.S. Grewal, and H.S. Arora, Ultrasonic Cavitation Erosion–Corrosion Behavior of Friction Stir Processed Stainless Steel, Ultrason. Sonochem., 2018, 44, p 331–339

    Article  CAS  Google Scholar 

  4. W.T. Fu, Y.B. Yang, T.F. Jing, Y.Z. Zheng, and M. Yao, The Resistance to Cavitation Erosion of CrMnN Stainless Steels, J. Mater. Eng. Perform., 1998, 7, p 801–804

    Article  CAS  Google Scholar 

  5. C.J. Heathcock, B.E. Protheroe, and A. Ball, Cavitation Erosion of Stainless Steels, Wear, 1982, 81(2), p 311–327

    Article  Google Scholar 

  6. Columbia Metals Ltd. www.columbiametals.com/files/products/121.pdf. Accessed 15 Oct 2019

  7. www.vanvoordenfoundry.com/cms_file.php?FromDB=3890&forceDownload (Stainless steel propellers instead of bronze? Newsletter No. 1. Van Voorden Foundry), and also at http://www.nsalloys.com/stainless-steel/avoid-propeller-cavitation-by-using-stainless-steel.html (The advantages to using stainless steel boat propellers). Accessed 17 Oct 2019

  8. A. Karimi, Cavitation Erosion of a Duplex Stainless Steel, Mater. Sci. Eng., 1987, 86, p 191–203

    Article  CAS  Google Scholar 

  9. A. Al-Hashem, P.G. Caceres, A. Abdullah, and H.M. Shalaby, Cavitation Corrosion of Duplex Stainless Steel in Seawater, Corrosion, 1997, 53(2), p 103–113

    Article  CAS  Google Scholar 

  10. M. Hattestrand, P. Larsson, G. Chai, J.O. Nilsson, and J. Odqvist, Study of Decomposition of Ferrite in a Duplex Stainless Steel Cold Worked and Aged at 450–500 °C, Mater. Sci. Eng. A, 2009, 499(1–2), p 489–492

    Article  Google Scholar 

  11. M. Pohl, O. Storz, and T. Glogowski, Effect of Intermetallic Precipitations on the Properties of Duplex Stainless Steel, Mater. Charact., 2008, 58(1), p 65–71

    Article  Google Scholar 

  12. S.S.M. Tavares, A. Loureiro, J.M. Pardal, T.R. Montenegro, and V.C. da Costa, Influence of Heat Treatments at 475 and 400 °C on the Pitting Corrosion Resistance and Sensitization of UNS S32750 and UNS S32760 Superduplex Stainless Steels, Mater. Corros., 2012, 63(6), p 522–526

    CAS  Google Scholar 

  13. W. Ai, K.H. Lo, and C.T. Kwok, Cavitation Erosion of a Spinodally Decomposed Wrought Duplex Stainless Steel in a Benign Environment, Wear, 2019, 424–425, p 111–121

    Article  Google Scholar 

  14. F. Marques, W.M. da Silva, J.M. Pardal, S.S.M. Tavares, and C. Scandiana, Influence of Heat Treatments on the Micro-abrasion Wear Resistance of a Superduplex Stainless Steel, Wear, 2011, 271(1–10), p 1288–1294

    Article  CAS  Google Scholar 

  15. J.L. del Abra-Arzola, M.A. García-Rentería, V.L. Cruz-Hernández, J. García-Guerra, V.H. Martínez-Landeros, L.A. Falcón-Franco, and F.F. Curiel-Lopez, Study of the Effect of Sigma Phase Precipitation on the Sliding Wear and Corrosion Behaviour of Duplex Stainless Steel AISI, 2205, Wear, 2018, 400–401, p 43–51

    Article  Google Scholar 

  16. J. Wan, H. Ruan, J. Wang, and S. Shi, The Kinetic Diagram of Sigma Phase and Its Precipitation Hardening Effect on 15Cr-2Ni Duplex Stainless Steel, Mater. Sci. Eng. A, 2019, 711, p 571–578

    Article  Google Scholar 

  17. V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, and S.S.M. Tavares, Influence of Microstructure on the Corrosion Resistance of the Duplex Stainless Steel UNS S31803, Mater. Charact., 2008, 59(8), p 1127–1132

    Article  CAS  Google Scholar 

  18. S.S.M. Tavares, J.M. Pardal, J.L. Guerreiro, A.M. Gomes, and M.R. da Silva, Magnetic Detection of Sigma Phase in Duplex Stainless Steel UNS S31803, J. Magn. Magn. Mater., 2010, 322(17), p L29–L33

    Article  CAS  Google Scholar 

  19. V.A. Hosseini, L. Karlsson, D. Engelberg, and S. Wessman, Time-Temperature-Precipitation and Property Diagrams for Super Duplex Stainless Steel Weld Metals, Weld. World, 2018, 62(3), p 517–533

    Article  CAS  Google Scholar 

  20. C.R. de Farias Azevedo, H.B. Pereira, S. Wolynec, and A.F. Padilha, An Overview of the Recurrent Failures of Duplex Stainless Steels, Eng. Fail. Anal., 2019, 97, p 161–188

    Article  Google Scholar 

  21. J. Olsson and M. Snis, Duplex—A New Generation of Stainless Steels for Desalination Plants, Desalination, 2007, 205(1–3), p 104–113

    Article  CAS  Google Scholar 

  22. H.M. Ezubera, A. El-Houdb, and F. El-Shawesh, Effects of Sigma Phase Precipitation on Seawater Pitting of Duplex Stainless Steel, Desalination, 2007, 207(1–3), p 268–275

    Article  Google Scholar 

  23. C.J. Park, V.S. Rao, and H.S. Kwon, Effects of Sigma Phase on the Initiation and Propagation of Pitting Corrosion of Duplex Stainless Steel, Corrosion, 2005, 61(1), p 76–83

    Article  CAS  Google Scholar 

  24. D.Y. Kobayashi and S. Wolynec, Evaluation of the Low Corrosion Resistant Phase Formed During the Sigma Phase Precipitation in Duplex Stainless Steels, Mater. Res., 1999, 2(4), p 239–247

    Article  CAS  Google Scholar 

  25. J. Basumatary and R.J.K. Wood, Different Methods of Measuring Synergy between Cavitation Erosion and Corrosion for Nickel Aluminium Bronze in 3.5% NaCl Solution, Tribol. Int., 2017, https://doi.org/10.1016/j.triboint.2017.08.006

    Article  Google Scholar 

  26. G. Gao and Z. Zhang, Cavitation Erosion Behavior of 316L Stainless Steel, Tribol. Lett., 2019, https://doi.org/10.1016/j.ultsonch.2019.104668

    Article  Google Scholar 

  27. J.M. Vitek and S.A. David, The Sigma Phase Transformation in Austenitic Stainless Steels, Weld. J., 1986, 65, p 106s–111s

    Google Scholar 

  28. C.C. Hsieh and W. Wu, Overview of Intermetallic Sigma (Sigma Phase) Phase Precipitation in Stainless Steels, Int. Sch. Res. Netw. ISRN Metall., 2012, https://doi.org/10.5402/2012/732471

    Article  Google Scholar 

  29. T. Ohmura, K. Tsuzaki, K. Sawada, and K. Kimura, Inhomogeneous Nano-mechanical Properties in the Multi-phase Microstructure of Long-Term Aged Type 316 Stainless Steel, J. Mater. Res., 2006, 21(5), p 1229–1236

    Article  CAS  Google Scholar 

  30. N. Llorca-Isern, H. Lopez-Luque, I. Lopez-Jimenez, and M.V. Biezma, Identification of Sigma and Chi Phases in Duplex Stainless Steels, Mater. Charact., 2016, 112, p 20–29

    Article  CAS  Google Scholar 

  31. I. Tzanakis, L. Bolzoni, D.G. Eskin, and M. Hadfield, Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery, Metall. Mater. Trans. A, 2017, 48, p 2193–2206

    Article  CAS  Google Scholar 

  32. W.J. Tomlinson and S.J. Matthews, Cavitation Erosion of Aluminium Alloys, J. Mater. Sci., 1994, 29(4), p 1101–1108

    Article  CAS  Google Scholar 

  33. M.G.D.V. Cuppari, R.M. Souza, and A. Sinatora, Effect of Hard Second Phase on Cavitation Erosion of Fe-Cr-Ni-C Alloys, Wear, 2005, 258(1–4), p 596–603

    Article  Google Scholar 

  34. B.G. Giren, M. Szkodo, and J. Steller, Cavitation Erosion of Some Laser-produced Iron-Base Corrosion-Resistant Alloys, Wear, 2005, 258(1–4), p 614–622

    Article  CAS  Google Scholar 

  35. K. Kondoh, J. Umeda, and R. Watanabe, Cavitation Resistance of Powder Metallurgy Aluminum Matrix Composite with AlN Dispersoids, Mater. Sci. Eng. A, 2009, 499(1–2), p 440–444

    Article  Google Scholar 

  36. R.H. Richman and W.P. McNaughton, Correlation of Cavitation Rrosion Behavior with Mechanical Properties of Metals, Wear, 1990, 140(1), p 63–82

    Article  CAS  Google Scholar 

  37. S.J. Pawel and E.T. Manneschmidt, Preliminary Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn, J. Nucl. Mater., 2003, 318, p 122–131

    Article  CAS  Google Scholar 

  38. K. Peng, C. Kang, G. Li, K. Matsuda, and H. Soyama, Effect of Heat Treatment on the Cavitation Erosion Resistance of Stainless Steel, Mater. Corros., 2018, 69(4), p 536–544

    Article  CAS  Google Scholar 

  39. S. Zhang, C.L. Wu, C.H. Zhang, M. Guan, and J.Z. Tan, Laser Surface Alloying of FeCoCrAlNi High-entropy Alloy on 304 Stainless Steel to Enhance Corrosion and Cavitation Erosion Resistance, Opt. Laser Technol., 2016, 84, p 23–31

    Article  CAS  Google Scholar 

  40. The Nickel Development Institute (NiDI). Design Guidelines for the Selection and Use of Stainless Steels—A Designers’ Handbook Series No. 9014.

Download references

Acknowledgments

Funded by the University of Macau through a Multi-Year Research Grant (MYRG2018-00030-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Lo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W., Lo, K.H., Li, X. et al. Cavitation Erosion Damage Mechanism of a Duplex Stainless Steel Having a Ferrite-Austenite-Sigma-Phase Triplex Microstructure. J. of Materi Eng and Perform 29, 2806–2815 (2020). https://doi.org/10.1007/s11665-020-04807-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04807-9

Keywords

Navigation