Skip to main content
Log in

Strength–Ductility Trade-Off in Dual-Phase Steel Tailored via Controlled Phase Transformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The controlled phase transformation approach is a new generation of microstructure engineering for enhancing ductility in ultrafine-grained materials. The present study aims to extend this concept to dual-phase steel for enhanced tensile ductility at high strength. In this study, cold-rolled steel was subjected to annealing at different processing conditions to develop the core–shell microstructure constituting martensite core and ferrite as shell in the matrix. Controlled austenite decomposition was adopted in designing a core–shell-type structure. The evolved microstructure was characterized using a scanning electron microscope and electron backscatter diffraction technique. The results showed that the uniaxial tensile deformation of dual-phase structured steels had a remarkable strength–ductility trade-off. The ductility was increased anomalously at high martensite fractions. Further, the mechanism of damage activity leading to void nucleation and microcrack formation was studied in post-tensile fractured specimens to establish a correlation with tensile deformation characteristics. The possibility and outcomes of this approach are also reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Ameyama, H. Fujiwara, K. Ameyama, and H. Fujiwara, Creation of Harmonic Structure Materials with Outstanding Mechanical Properties, Mater. Sci. Forum, 2012, 706–709, p 9–16

    Article  Google Scholar 

  2. D. Orlov, H. Fujiwara, and K. Ameyama, Obtaining Copper with Harmonic Structure for the Optimal Balance of Structure-Performance Relationship, Mater. Trans., 2013, 54, p 1549–1553

    Article  CAS  Google Scholar 

  3. C. Sawangrat, O. Yamaguchi, S.K. Vajpai, and K. Ameyama, Application of Harmonic Structure Design to Biomedical Co-Cr-Mo Alloy for Improved Mechanical Properties, Mater. Trans., 2014, 55, p 99–105

    Article  CAS  Google Scholar 

  4. N.J. Khalil, S.K. Vajpai, M. Ota, and K. Ameyama, Application of Al–Si Semi-Solid Reaction for Fabricating Harmonic Structured Al Based Alloy, Mater. Trans., 2016, 57, p 1433–1439

    Article  CAS  Google Scholar 

  5. H. Fujiwara, R. Akada, Y. Yoshita, and K. Ameyama, Microstructure and Mechanical Property of Nano-Duplex Materials Produced by HRS Process, Mater. Sci. Forum, 2013, 503–504, p 227–232

    Google Scholar 

  6. S.K. Vajpai, K. Ameyama, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, G. Dirras, and D. Tingaud, High Performance Ti-6Al-4V Alloy by Creation of Harmonic Structure Design, IOP Conf. Series: Mater. Sci. Eng., 2014, 63, p 012030

    Article  Google Scholar 

  7. O.P. Ciuca, M. Ota, S. Deng, and K. Ameyama, Harmonic Structure Design of a SUS329J1 Two Phase Stainless Steel and Its Mechanical Properties, Mater. Trans., 2013, 54, p 1629–1633

    Article  CAS  Google Scholar 

  8. G. Thomas, and J. Y. Koo, Structure and Properties of Dual Phase Steels, in AIME Symposium, R.A. Kot, J.W. Morris, Eds., Feb 19–21, Metallurgical Society of AIME, 1979, p. 183

  9. Z. Jiang, Z. Guan, and J. Lian, Effects of Microstructural Variables on the Deformation Behaviour of Dual-phase Steel, Mater. Sci. Eng. A, 1995, 190, p 55–64

    Article  Google Scholar 

  10. A. Bag, K.K. Ray, and E.S. Dwarakadasa, Influence of Martensite Content and Morphology of Tensile and Impact Properties of High-martensite Dual-phase Steels, Metall. Mater. Trans. A, 1990, 30, p 1193–1202

    Article  Google Scholar 

  11. Q. Meng, J. Li, J. Wang, Z. Zhang, and L. Zhang, Effect of Water Quenching Process on Microstructure and Tensile Properties of Low Alloy Cold Rolled Dual-phase Steel, Mater. Des., 2009, 30, p 2379–2385

    Article  CAS  Google Scholar 

  12. K.B. Ravi, N.K. Patel, K. Mukherjee, M. Walunj, G.K. Mandal, and T. Venugopalan, Ferrite Channel Effect on Ductility and Strain Hardenability of Ultra High Strength Dual Phase Steel, Mater. Sci. Eng. A, 2017, 685, p 187–193

    Article  Google Scholar 

  13. H.A. Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating, ISIJ Int., 2011, 51(6), p 958–964

    Article  Google Scholar 

  14. N. Nakada, Y. Arakawa, K.-S. Park, T. Tsuchiyama, and S. Takaki, Dual Phase Structure Formed by Partial Reversion of Cold-Deformed Martensite, Mater. Sci. Eng. A, 2012, 553, p 128–133

    Article  CAS  Google Scholar 

  15. M. Nouroozi, H. Mirzadeh, and M. Zamani, Effect of Microstructural Refinement and Intercritical Annealing Time on Mechanical Properties of High-Formability Dual Phase Steel, Mater. Sci. Eng. A, 2018, 736, p 22–26

    Article  CAS  Google Scholar 

  16. Y. Mazaheri, A. Kermanpur, and A. Najafizadeh, A Novel Route for Development of Ultrahigh Strength Dual Phase Steels, Mater. Sci. Eng. A, 2014, 619, p 1–11

    Article  CAS  Google Scholar 

  17. J. Zhang, H. Di, Y. Deng, and R.D.K. Misra, Effect of Martensite Morphology and Volume Fraction on Strain Hardening and Fracture Behavior of Martensite-Ferrite Dual Phase Steel, Mater. Sci. Eng. A, 2015, 627, p 230–240

    Article  CAS  Google Scholar 

  18. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45, p 391–491

    Article  CAS  Google Scholar 

  19. W.J. Dan, Z.Q. Lin, S.H. Li, and W.G. Zhang, Study on the Mixture Strain Hardening of Multi-Phase Steels, Mater. Sci. Eng. A, 2012, 552, p 1–8

    Article  CAS  Google Scholar 

  20. A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size, Metall. Mater. Trans. A, 2012, 43, p 3850–3869

    Article  CAS  Google Scholar 

  21. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527, p 2738–2746

    Article  Google Scholar 

  22. H. Mirzadeh, M. Alibeyki, and M. Najafi, Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-Phase Steel, Metall. Mater. Trans. A, 2017, 48(10), p 4565–4573

    Article  CAS  Google Scholar 

  23. A. Karmakar, M. Mandal, A. Mandal, M.B. Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A, 2015, 47(1), p 268–281

    Article  Google Scholar 

  24. M. Zamani, H. Mirzadeh, and M. Maleki, Enhancement of Mechanical Properties of Low Carbon Dual Phase Steel via Natural Aging, Mater. Sci. Eng. A, 2018, 734, p 178–183

    Article  CAS  Google Scholar 

  25. L.J. Chai, S.Y. Wang, H. Wu, Z. Yang, H. Pan, B. Song, and N. Guo, Bimodal Plate Structures Induced by Pulsed Laser in Duplex-Phase Zr Alloy, Sci. China Technol. Sci., 2017, 60, p 587–592

    Article  CAS  Google Scholar 

  26. L. Chai, J. Xia, Y. Zhi, K. Chen, T. Wang, B. Song, and N. Guo, Strengthening or Weakening Texture Intensity of Zr Alloy by Modifying Cooling Rates From α + β Region, Mater. Chem. Phys., 2018, 213, p 414–421

    Article  CAS  Google Scholar 

  27. J. Xia, L. Chai, H. Woo, Y. Zhi, Y.N. Guo, W.J. Huang, and N. Guo, EBSD Study of Microstructural and Textural Changes of Hot-Rolled Ti–6Al–4V Sheet After Annealing at 800 °C, Acta Metall. Sin. (Engl. Lett.), 2018, 31, p 1215–1223

    Article  CAS  Google Scholar 

  28. M. Hillert, K. Nilsson, and L.E. Torndahl, Effect of Alloying Elements on the Formation of Austenite and Dissolution of Cementite, J. Iron Steel Inst., 1971, 209, p 49–66

    CAS  Google Scholar 

  29. Y. Duan, Peeling Stress Model and Analysis of Single-L Carbon Fiber Reinforced Plastic/Polymer/Al Composite Component, Chin. J. Mech. Eng., 2012, 201248, p 44

    Article  Google Scholar 

  30. J.W. Cahn, The Kinetics of Grain Boundary Nucleated Reactions, Acta Met., 1956, 4, p 449–459

    Article  CAS  Google Scholar 

  31. M. Enomoto, W.F. Lange, and H.I. Aaronson, The Kinetics of Ferrite Nucleation at Austenite Grain Edges in Fe-C and Fe-C-X alloys, Metall. Trans. A, 1986, 17, p 1399–1407

    Article  Google Scholar 

  32. J.R. Bradley, H.I. Aaronson, K.C. Russell, and W.C. Jonshson, Effects of Austenitizing Temperature on the Kinetics of the Proeutectoid Ferrite Reaction at Constant Austenite Grain Size in an Fe-C Alloy, Metall. Trans. A, 1977, 8, p 1955–1961

    Article  Google Scholar 

  33. T.T. Huang, R.B. Gou, W.J. Dan, and W.G. Zhang, Strain-Hardening Behaviors of Dual Phase Steels with Microstructure Features, Mater. Sci. Eng. A, 2016, 672, p 88–97

    Article  CAS  Google Scholar 

  34. Y. Bergstrom, Y. Granbom, and D. Sterkenburg, A Dislocation-based Theory for the Deformation Hardening Behavior of DP Steels: Impact of Martensite Content and Ferrite Grain Size, J. Metall., 2010, 2010, p 1–16

    Article  Google Scholar 

  35. Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and Mechanical Properties of Dual Phase Steel Produced by Laboratory Simulated Strip Casting, Mater. Des., 2015, 88, p 537–549

    Article  CAS  Google Scholar 

  36. G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite during Intercritical Annealing of Dual-Phase Steels, Metall. Trans. A, 1981, 12A, p 1419–1428

    Article  Google Scholar 

  37. A. Sharma, M.H. Roh, D.H. Jung, and J.P. Jung, Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications, Metall. Mater. Trans. A, 2016, 47A, p 510–521

    Article  Google Scholar 

  38. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2004

    Google Scholar 

  39. N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Microstructure and Texture Evolution in Dual-Phase Steels: Competition between Recovery, Recrystallization, and Phase Transformation, Mater. Sci. Eng. A, 2010, 527, p 4161–4168

    Article  Google Scholar 

  40. W.F. Hosford, Mechanical Behavior of Materials, Cambridge University Press, New York, 2005, p 128

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge their gratitude to Director, CSIR-National Metallurgical Laboratory, Jamshedpur, in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok K. Srivastava or Byungmin Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Patel, N.K., Ravi Kumar, B. et al. Strength–Ductility Trade-Off in Dual-Phase Steel Tailored via Controlled Phase Transformation. J. of Materi Eng and Perform 29, 2783–2791 (2020). https://doi.org/10.1007/s11665-020-04799-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04799-6

Keywords

Navigation