Skip to main content
Log in

Electrophoretic Deposition of Titanium Oxide on Wollastonite Glass–Ceramic Scaffold for Tissue Engineering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fabrication of bioactive scaffolds for tissue engineering applications has attracted attention in the past decades. Porous wollastonite glass–ceramic scaffolds coated and impregnated with titania (TiO2) particles were utilized through electrophoretic deposition. The present study aimed at improving specific surface area, strength, and getting highest penetration depth of TiO2 particles into the pores. Deposition time, applied voltage, and concentration of the process were optimized to achieve homogeneous TiO2 coating on the surface of scaffold. Scaffolds were then immersed in simulated body fluid solution, and x-ray diffraction analysis and Fourier transform infrared spectroscopy tests were conducted to determine their bioactivity. Mercury porosimetry and Brunauer–Emmett–Teller analysis were adopted to investigate the pore size distribution and surface area. Finally, field emission scanning electron microscope (FESEM) was utilized to compare the structural properties of the uncoated and coated scaffolds and investigate the penetration depth of TiO2 particles through the pores. Results showed the effect of voltage, slurry concentration, and process time on this depth. The compressive strength improved after coating. FESEM images and map analysis showed that a thin layer of deposited TiO2 on pore struts and a 2 mm penetration depth of TiO2 into the pores were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F. Baino and E. Verné, Glass-Based Coatings on Biomedical Implants: A State-of-the-Art Review, Biomed. Glasses, 2017, 3(1), p 1–17

    Google Scholar 

  2. R. James et al., Nanocomposites and Bone Regeneration, Front. Mater. Sci., 2011, 5(4), p 342–357

    Google Scholar 

  3. L. Roseti et al., Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives, Mater. Sci. Eng., C, 2017, 78, p 1246–1262

    CAS  Google Scholar 

  4. S. Fiorilli et al., Electrophoretic Deposition of Mesoporous Bioactive Glass on Glass–Ceramic Foam Scaffolds for Bone Tissue Engineering, J. Mater. Sci. Mater. Med., 2015, 26(1), p 1–12

    CAS  Google Scholar 

  5. J.R. Jones, Reprint of: Review of Bioactive Glass: From Hench to Hybrids, Acta Biomater., 2015, 23, p S53–S82

    Google Scholar 

  6. Q. Fu et al., Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater. Sci. Eng., C, 2011, 31(7), p 1245–1256

    CAS  Google Scholar 

  7. M.R. Man, Bioactive Ceramics and Glasses for Tissue Engineering, Tissue Engineering Using Ceramics and Polymers, A.R. Boccaccini and P.X. Ma, Ed., Elsevier, Amsterdam, 2014, p 67

    Google Scholar 

  8. R. Morsy, R. Abuelkhair, and T. Elnimr, Synthesis of Microcrystalline Wollastonite Bioceramics and Evolution of Bioactivity, Silicon, 2017, 9(4), p 489–493

    CAS  Google Scholar 

  9. M. Sun et al., Systematical Evaluation of Mechanically Strong 3D Printed Diluted Magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects, Sci. Rep., 2016, 6, p 34029

    CAS  Google Scholar 

  10. C. Wu and J. Chang, A Review of Bioactive Silicate Ceramics, Biomed. Mater., 2013, 8(3), p 032001

    Google Scholar 

  11. H.-M. Lin, C.-H. Keng, and C.-Y. Tung, Gas-Sensing Properties of Nanocrystalline TiO2, Nanostruct. Mater., 1997, 9(1–8), p 747–750

    CAS  Google Scholar 

  12. N.-S. Jang et al., Direct Growth of Titania Nanotubes on Plastic Substrates and Their Application to Flexible Gas Sensors, Sensors Actuators B Chem., 2014, 199, p 361–368

    CAS  Google Scholar 

  13. A. Mezni et al., Facile Synthesis of High Thermally Stable TiO2 Photocatalyst, N. J. Chem., 2017, 41, p 5021–5027

    CAS  Google Scholar 

  14. Y. Yokoi et al., Proliferation and Alkaline Phosphatase Activity of Osteoblast-Like Cells on the Sintered Rutile Titanium Dioxide, J. Hard Tissue Biol., 2017, 26(1), p 37–42

    CAS  Google Scholar 

  15. R. Verma et al., Antibacterial Characteristics of TiO2 Nano-objects and Their Interaction with Biofilm, Mater. Technol., 2017, 32(6), p 385–390

    CAS  Google Scholar 

  16. I. Narkevica et al., Electrophoretic Deposition of Nanocrystalline TiO2 Particles on Porous TiO2-x Ceramic Scaffolds for Biomedical Applications, J. Eur. Ceram. Soc., 2017, 37(9), p 3185–3193

    CAS  Google Scholar 

  17. X.-X. Wang et al., Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution, Biomaterials, 2002, 23(5), p 1353–1357

    CAS  Google Scholar 

  18. W. Ortega-Lara et al., Antibacterial Properties, In Vitro Bioactivity and Cell Proliferation of Titania–Wollastonite Composites, Ceram. Int., 2010, 36(2), p 513–519

    CAS  Google Scholar 

  19. A. Boccaccini et al., Fabrication, Characterisation and Assessment of Bioactivity of Poly(D, L lactid acid)(PDLLA)/TiO2 Nanocomposite Films, Compos. Part A Appl. Sci. Manuf., 2005, 36(6), p 721–727

    Google Scholar 

  20. S. Areva et al., Use of Sol–Gel-Derived Titania Coating for Direct Soft Tissue Attachment, J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2004, 70(2), p 169–178

    Google Scholar 

  21. M. Jokinen et al., Influence of Sol and Surface Properties on In Vitro Bioactivity of Sol-Gel-Derived TiO2 and TiO2-SiO2 Films Deposited by Dip-Coating Method, J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 1998, 42(2), p 295–302

    CAS  Google Scholar 

  22. P. Li et al., Bonelike Hydroxyapatite Induction by a Gel-Derived Titania on a Titanium Substrate, J. Am. Ceram. Soc., 1994, 77(5), p 1307–1312

    CAS  Google Scholar 

  23. N. Moritz et al., Local Induction of Calcium Phosphate Formation on TiO2 Coatings on Titanium Via surface Treatment with a CO2 Laser, J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2003, 65(1), p 9–16

    CAS  Google Scholar 

  24. M. Uchida et al., Structural Dependence of Apatite Formation on Titania Gels in a Simulated Body Fluid, J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2003, 64(1), p 164–170

    Google Scholar 

  25. R. Viitala et al., In Vitro Bioactivity of Aerosol-Gel Deposited TiO2 Thin Coatings, J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2001, 54(1), p 109–114

    CAS  Google Scholar 

  26. C. Gómez-Polo et al., Multifunctional Sensor Based on a Hybrid Ferromagnetic/Sol–Gel TiO2 Coating Nanostructure, Ind. Eng. Chem. Res., 2013, 52(10), p 3787–3793

    Google Scholar 

  27. S. Dosta et al., Influence of Atmospheric Plasma Spraying on the Solar Photoelectro-Catalytic Properties of TiO2 Coatings, Appl. Catal. B Environ., 2016, 189, p 151–159

    CAS  Google Scholar 

  28. S. Davíđsdóttir et al., Interfacial Structure and Photocatalytic Activity of Magnetron Sputtered TiO2 on Conducting Metal Substrates, ACS Appl. Mater. Interfaces., 2014, 6(24), p 22224–22234

    Google Scholar 

  29. S. Tang et al., Preparation of Rutile TiO2 Coating by Thermal Chemical Vapor Deposition for Anticoking Applications, ACS Appl. Mater. Interfaces., 2014, 6(19), p 17157–17165

    CAS  Google Scholar 

  30. S. Cabanas-Polo and A.R. Boccaccini, Electrophoretic Deposition of Nanoscale TiO2: Technology and Applications, J. Eur. Ceram. Soc., 2016, 36(2), p 265–283

    CAS  Google Scholar 

  31. H. Abdoli and P. Alizadeh, Electrophoretic Deposition of (Mn, Co)3O4 Spinel Nano Powder on SOFC Metallic Interconnects, Mater. Lett., 2012, 80, p 53–55

    CAS  Google Scholar 

  32. H. Abdoli, S. Molin, and H. Farnoush, Effect of Interconnect Coating Procedure on Solid Oxide Fuel Cell Performance, Mater. Lett., 2019, 259, p 126898

    Google Scholar 

  33. D. Schiemann, P. Alphonse, and P.-L. Taberna, Synthesis of High Surface Area TiO2 Coatings on Stainless Steel by Electrophoretic Deposition, J. Mater. Res., 2013, 28(15), p 2023–2030

    CAS  Google Scholar 

  34. H. Nguyen, W. Fürbeth, and M. Schütze, Nano-Enamel: A New Way to Produce Glass-Like Protective Coatings for Metals, Mater. Corros., 2002, 53(10), p 772–782

    CAS  Google Scholar 

  35. M. Hein et al., Electrophoretic Deposition of Textured YBa2Cu3O7−x Films on Silver Substrates, J. Appl. Phys., 1989, 66(12), p 5940–5943

    CAS  Google Scholar 

  36. N.P. Bansal and A.R. Boccaccini, Ceramics and Composites Processing Methods, Wiley, New York, 2012

    Google Scholar 

  37. L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater Sci., 2007, 52(1), p 1–61

    CAS  Google Scholar 

  38. H. Ma, L. Xue, and T. Nie, Fabrication of PLLA Scaffold with Gradient Macro/Micro/Nano Structure by Electrophoretic Deposition of Carbon Nanotube, Mater. Lett., 2015, 159, p 185–188

    CAS  Google Scholar 

  39. G. Molino et al., Electrophoretic Deposition of Spray-Dried Sr-Containing Mesoporous Bioactive Glass Spheres on Glass-Ceramic Scaffolds for Bone Tissue Regeneration, J. Mater. Sci., 2017, 52, p 9103–9114

    CAS  Google Scholar 

  40. A.R. Boccaccini et al., Carbon Nanotube Coatings on Bioglass-Based Tissue Engineering Scaffolds, Adv. Funct. Mater., 2007, 17(15), p 2815–2822

    CAS  Google Scholar 

  41. P. Alizadeh and V. Marghussian, Effect of Nucleating Agents on the Crystallization Behaviour and Microstructure of SiO2–CaO–MgO (Na2O) Glass-Ceramics, J. Eur. Ceram. Soc., 2000, 20(6), p 775–782

    CAS  Google Scholar 

  42. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915

    CAS  Google Scholar 

  43. W. Li et al., 45S5 Bioactive Glass-Based Scaffolds Coated with Cellulose Nanowhiskers For Bone Tissue Engineering, RSC Adv., 2014, 4(99), p 56156–56164

    CAS  Google Scholar 

  44. C.M. Murphy, M.G. Haugh, and F.J. O’Brien, The Effect of Mean Pore Size on Cell Attachment, Proliferation and Migration in Collagen–Glycosaminoglycan Scaffolds for Bone Tissue Engineering, Biomaterials, 2010, 31(3), p 461–466

    CAS  Google Scholar 

  45. A. Karamanov and M. Pelino, Induced Crystallization Porosity and Properties of Sintereds Diopside and Wollastonite Glass-Ceramics, J. Eur. Ceram. Soc., 2008, 28(3), p 555–562

    CAS  Google Scholar 

  46. T.J. Clark and J.S. Reed, Kinetic Processes Involved in the Sintering and Crystallization of Glass Powders, J. Am. Ceram. Soc., 1986, 69(11), p 837–846

    CAS  Google Scholar 

  47. S. Haber and L. Gal-Or, Deep Electrophoretic Penetration and Deposition of Ceramic Particles Inside Porous Substrates I. Analytical Model, J. Electrochem. Soc., 1992, 139(4), p 1071–1078

    CAS  Google Scholar 

  48. H. Hamaker, Formation of a Deposit by Electrophoresis, Trans. Faraday Soc., 1940, 35, p 279–287

    Google Scholar 

  49. L. Gal-Or, S. Liubovich, and S. Haber, Deep Electrophoretic Penetration and Deposition of Ceramic Particles Inside Porous Substrates II. Experimental Model, J. Electrochem. Soc., 1992, 139(4), p 1078–1081

    CAS  Google Scholar 

  50. H. Abdoli et al., Fabrication of Aluminum Nitride Coatings by Electrophoretic Deposition: Effect of Particle Size on Deposition and Drying Behavior, Ceram. Int., 2011, 37(1), p 313–319

    CAS  Google Scholar 

  51. L. Vandeperre, O. Van der Biest, W. Clegg, Silicon Carbide Laminates with Carbon Interlayers by Electrophoretic Deposition, ed. by M. Fuentes, J.M. Martínez-Esnaola, A.M. Daniel. Key Engineering Materials (Trans Tech Publ, 1997)

  52. I.A. Borojeni, et al., Aging Behavior of Yttria Stabilized Zirconia (YSZ) in Non aqueous Suspensions for Electrophoretic Deposition Application, ed. by A.R. Boccaccini, O. van der Biest, R. Clasen, T. Uchikoshi. Key Engineering Materials (Trans Tech Publ, 2009)

  53. C. Ji, W. Lan, and P. Xiao, Fabrication of Yttria-Stabilized Zirconia Coatings Using Electrophoretic Deposition: Packing Mechanism During Deposition, J. Am. Ceram. Soc., 2008, 91(4), p 1102–1109

    CAS  Google Scholar 

  54. S.-D. Yoon et al., Characterization of Wollastonite Glass-Ceramics Made from Waste Glass and Coal Fly Ash, J. Mater. Sci. Technol., 2013, 29(2), p 149–153

    CAS  Google Scholar 

  55. T. Kokubo et al., Mechanical Properties of a New Type of Apatite-Containing Glass-Ceramic for Prosthetic Application, J. Mater. Sci., 1985, 20(6), p 2001–2004

    CAS  Google Scholar 

  56. H. Abdoli et al., Effects of Thermal Aging on Thermo-mechanical Behavior of a Glass Sealant for Solid Oxide Cell Applications, J. Eur. Ceram. Soc., 2014, 34(10), p 2525–2534

    CAS  Google Scholar 

  57. J.B. Quinn and G.D. Quinn, A Practical and Systematic Review of Weibull Statistics for Reporting Strengths of Dental Materials, Dent. Mater., 2010, 26(2), p 135–147

    CAS  Google Scholar 

  58. S.R. Esfahani, F. Tavangarian, and R. Emadi, Nanostructured Bioactive Glass Coating on Porous Hydroxyapatite Scaffold for Strength Enhancement, Mater. Lett., 2008, 62(19), p 3428–3430

    Google Scholar 

  59. M.A. Encinas-Romero et al., Synthesis and Structural Characterization of Hydroxyapatite-Wollastonite Biocomposites, Produced by an Alternative Sol-Gel Route, J. Biomater. Nanobiotechnol., 2013, 4(04), p 327

    Google Scholar 

  60. A. El-Kheshen, R. Ahmed, and M. Zawrah, Densification, Mechanical and Bioactive Properties of Borosilicate Glass/Anatase Nano-composites, J. Am. Sci., 2012, 8, p 562–569

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Alizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, K., Alizadeh, P. & Abdoli, H. Electrophoretic Deposition of Titanium Oxide on Wollastonite Glass–Ceramic Scaffold for Tissue Engineering. J. of Materi Eng and Perform 29, 2767–2782 (2020). https://doi.org/10.1007/s11665-020-04793-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04793-y

Keywords

Navigation