Skip to main content

Advertisement

Log in

Experimental Investigations on Welding Stress Distribution in Thick Specimens After Postweld Heat Treatment and Ultrasonic Impact Treatment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper presents the welding residual stress distribution in thick specimens after postweld treatments (postweld heat treatment—PWHT, and ultrasonic impact treatment—UIT). Three specimens with a thickness of 40 mm were multipass butt-welded by the gas metal arc welding (GMAW). The surface stresses were evaluated by the hole-drilling (HD) and the x-ray diffraction (XRD) methods, while the internal stresses were determined by the contour method (CM). It is found that UIT has a local effect on the welding residual stress. It can convert the tensile welding stresses into compressive stresses and introduce about a 3-6 mm compressive stress layer at the treated surface with little effect on the stresses outside the treated region and the stress distribution in the interior weld zone. Additionally, UIT shows the same effect on the surface longitudinal and transverse stresses, which results in a similar distribution and magnitude of compressive longitudinal and transverse stresses on the treated regions. PWHT has a global stress release of the welding residual stress, resulting in almost uniform stress distribution in the specimen with the range from − 200 to 100 MPa. PWHT also causes the release of the compressive transverse stress in the interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.N. James, Residual Stress Influences on Structural Reliability, Eng. Fail. Anal., 2011, 18(8), p 1909–1920

    Article  CAS  Google Scholar 

  2. A.M. Paradowska, J.W.H. Price, R. Ibrahim, T.R. Finlayson, M.I. Ripley, and R. Blevins, The Effects of Restraint and Post-weld Heat Treatment on Residual Stress Distribution in a Bead-on-plate Weld, J. Neutron Res., 2007, 15(3–4), p 231–241

    Article  CAS  Google Scholar 

  3. C.C. Huang and T.H. Chuang, Effects of Post-weld Heat Treatments on the Residual Stress and Mechanical Properties of Laser Beam Welded SAE 4130 Steel Plates, Mater. Manuf. Process., 1997, 12(5), p 779–797

    Article  CAS  Google Scholar 

  4. R. Duan, Z. Luo, Y. Li, Y. Zhang, and Z.M. Liu, Novel Postweld Heat Treatment Method for Improving Mechanical Properties of Resistance Spot Weld, Sci. Technol. Weld. Join., 2015, 20(2), p 100–105

    Article  CAS  Google Scholar 

  5. M. Hirohata, Effect of Post Weld Heat Treatment on Steel Plate Deck with Trough Rib by Portable Heat Source, Weld. World, 2017, 61(6), p 1225–1235

    Article  CAS  Google Scholar 

  6. J. Yu, G. Gou, L. Zhang, W. Zhang, H. Chen, and Y.P. Yang, Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(7), p 3046–3056

    Article  CAS  Google Scholar 

  7. X. Cheng, J.W. Fisher, H.J. Prask, T. Gnäupel-Herold, B.T. Yen, and S. Roy, Residual Stress Modification by Post-weld Treatment and Its Beneficial Effect on Fatigue Strength of Welded Structures, Int. J. Fatigue, 2003, 25(9–11), p 1259–1269

    Article  CAS  Google Scholar 

  8. M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes, and P.J. Withers, Engineering the Residual Stress State and Microstructure of Stainless Steel with Mechanical Surface Treatments, Appl. Phys. A Mater., 2010, 99(3), p 549–556

    Article  CAS  Google Scholar 

  9. M. Khurshid, M. Leitner, Z. Barsoum, and C. Schneider, Residual Stress State Induced by High Frequency Mechanical Impact Treatment in Different Steel Grades-Numerical and Experimental Study, Int. J. Mech. Sci., 2017, 123, p 34–42

    Article  Google Scholar 

  10. A. Abdullah, M. Malaki, and A. Eskandari, Strength Enhancement of the Welded Structures by Ultrasonic Peening, Mater. Des., 2012, 38, p 7–18

    Article  CAS  Google Scholar 

  11. H. Gao, R.K. Dutta, R.M. Huizenga, M. Amirthalingam, M.J.M. Hermans, T. Buslaps, and I.M. Richardson, Stress Relaxation Due to Ultrasonic Impact Treatment on Multi-pass Welds, Weld, Sci. Technol. Weld. Join., 2014, 19(6), p 505–513

    Article  CAS  Google Scholar 

  12. X. An, C.A. Rodopoulos, E.S. Statnikov, V.N. Vitazev, and O.V. Korolkov, Study of the Surface Nanocrystallization Induced by the Esonix Ultrasonic Impact Treatment on the Near-Surface of 2024-T351 Aluminum Alloy, J. Mater. Eng. Perform., 2006, 15(3), p 355–364

    Article  CAS  Google Scholar 

  13. E. Harati, L.E. Svensson, L. Karlsson, and M. Widmark, Effect of High Frequency Mechanical Impact Treatment on Fatigue Strength of Welded 1300 MPa Yield Strength Steel, Int. J. Fatigue, 2016, 92(Part1), p 96–106

    Article  CAS  Google Scholar 

  14. B. Qiang, Y. Li, C. Yao, X. Wang, and Y. Gu, Through-Thickness Distribution of Residual Stresses in Q345qD Butt-Welded Steel Plates, J. Mater. Process. Technol., 2018, 251, p 54–64

    Article  CAS  Google Scholar 

  15. V. Fontanari, F. Frendo, Th Bortolamedi, and P. Scardi, Comparison of the Hole-Drilling and X-ray Diffraction Methods for Measuring the Residual Stresses in Shot-peened Aluminium Alloys, J. Strain Anal. Eng. Des., 2005, 40(2), p 199–209

    Article  Google Scholar 

  16. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1—Measurement Techniques, Mater. Sci. Technol., 2001, 17(4), p 355–365

    Article  CAS  Google Scholar 

  17. M.B. Prime, Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, J. Eng. Mater. Technol., 2001, 123(2), p 162–168

    Article  Google Scholar 

  18. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588

    Article  Google Scholar 

  19. R. Gadallah, S. Tsutsumi, K. Hiraoka, and H. Murakawa, Prediction of Residual Stresses Induced by Low Transformation Temperature Weld Wires and Its Validation Using the Contour Method, Mar. Struct., 2015, 44, p 232–253

    Article  Google Scholar 

  20. C. Liu and X. Yi, Residual Stress Measurement on AA6061-T6 Aluminum Alloy Friction Stir Butt Welds Using Contour Method, Mater. Des., 2013, 46, p 366–371

    Article  CAS  Google Scholar 

  21. W. Rae, Z. Lomas, M. Jackson, and S. Rahimi, Measurements of Residual Stress and Microstructural Evolution in Electron Beam Welded Ti-6Al-4V Using Multiple Techniques, Mater. Charact., 2017, 132, p 10–19

    Article  CAS  Google Scholar 

  22. C. Liu, D. Chen, M.R. Hill, M.N. Tran, and J. Zou, Effects of Ultrasonic Impact Treatment on Weld Microstructure, Hardness, and Residual Stress, Mater. Sci. Technol., 2017, 33(14), p 1601–1609

    Article  CAS  Google Scholar 

  23. P. Pagliaro, M.B. Prime, H. Swenson, and B. Zuccarello, Measuring Multiple Residual-Stress Components Using the Contour Method and Multiple Cuts, Exp. Mech., 2010, 50(2), p 187–194

    Article  Google Scholar 

  24. B.N. Mordyuk and G.I. Prokopenko, Ultrasonic Impact Peening for the Surface Properties’ Management, J. Sound Vib., 2007, 308, p 855–866

    Article  Google Scholar 

  25. A.C. Sekkal, C. Langlade, and A.B. Vannes, A Micro/macro Impact Test at Controlled Energy for Erosion and Phase-transformation Simulation, Tribol. Lett., 2003, 15(3), p 265–274

    Article  Google Scholar 

  26. ASTM E837-13a, ASTM International, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain Gage Method, ASTM International, Philadelphia, 2013

    Google Scholar 

  27. D. Thibault, P. Bocher, and M. Thomas, Residual Stress and Microstructure in Welds of 13%Cr-4%Ni Martensitic Stainless Steel, J. Mater. Process. Technol., 2009, 209, p 2195–2202

    Article  CAS  Google Scholar 

  28. C. Liu, Q. Ge, D. Chen, F. Gao, and J. Zou, Residual Stress Variation in a Thick Welded Joint After Ultrasonic Impact Treatment, Sci. Technol. Weld. Join., 2016, 21(4), p 624–631

    Article  CAS  Google Scholar 

  29. C. Liu, Y. Yan, X. Cheng, C. Wang, and Y. Zhao, Residual Stress in a Restrained Specimen Processed by Post-weld Ultrasonic Impact Treatment, Sci. Technol. Weld. Join., 2019, 24(3), p 193–199

    Article  Google Scholar 

  30. M.B. Prime, M.R. Hill, A.T. DeWald, R.J. Sebring, M.J. Cola, Residual Stress Mapping in Welds Using the Contour Method, Proceedings of the 6th International Conference, April 15-19, 2002, Pine Mountain, Georgia, S.A. David et al., Ed., ASM International, Philadelphia, 2003, p 891–896

    Google Scholar 

  31. L.K. Keppas, R.C. Wimpory, D.E. Katsareas, and C. Ohms, Combination of Simulation and Experiment in Designing Repair Weld Strategies: A Feasibility Study, Nucl. Eng. Des., 2010, 240(10), p 2897–2906

    Article  CAS  Google Scholar 

  32. Y. Traoré, F. Hosseinzadeh, and P.J. Bouchard, Plasticity in the Contour Method of Residual Stress Measurement, Adv. Mater. Res., 2014, 996, p 337–342

    Article  Google Scholar 

  33. S. Shin, FEM Analysis of Plasticity-Induced Error on Measurement of Welding Residual Stress by the Contour Method, J. Mech. Sci. Technol., 2005, 19(10), p 1885–1890

    Article  Google Scholar 

  34. V. Richter-Trummer, E. Suzano, M. Beltrão, A. Roos, J.F. dos Santos, and P.M.S.T. de Castro, Influence of the FSW Clamping Force on the Final Distortion and Residual Stress Field, Mater. Sci. Eng. A, 2012, 538, p 81–88

    Article  CAS  Google Scholar 

  35. M.B. Toparli and M.E. Fitzpatrick, Development and Application of the Contour Method to Determine the Residual Stresses in Thin Laser-Peened Aluminium Alloy Plates, Exp. Mech., 2016, 56(2), p 323–330

    Article  CAS  Google Scholar 

  36. P.J. Withers, Residual Stress and Its Role in Failure, Rep. Prog. Phys., 2007, 70(12), p 2211–2264

    Article  Google Scholar 

  37. P. Dong, S. Song, and J. Zhang, Analysis of Residual Stress Relief Mechanisms in Post-Weld Heat Treatment, Int. J. Press. Vess. Pip., 2014, 122, p 6–14

    Article  Google Scholar 

  38. K.J. Kirkhope, R. Bell, L. Caron, R.I. Basu, and K.-T. Ma, Weld Detail Fatigue Life Improvement Techniques. Part 1: Review, Mar. Struct., 1999, 12, p 447–474

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51575251), the Natural Science Foundation of Jiangsu Province (BK20171308) and the National Key Research and Development Program of China (No. 2018YFC0310400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoling Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Shen, J., Yan, J. et al. Experimental Investigations on Welding Stress Distribution in Thick Specimens After Postweld Heat Treatment and Ultrasonic Impact Treatment. J. of Materi Eng and Perform 29, 1820–1829 (2020). https://doi.org/10.1007/s11665-020-04731-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04731-y

Keywords

Navigation