Skip to main content
Log in

Production and Characterization of Boride and Carbide Layers on AISI 15B30 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2020

This article has been updated

Abstract

Carbon-boron steels are widely used as components in ground engaging tools and agriculture components, being subject to different forms of tribological wear. The use of treatments to produce hard layers and wear resistance can significantly increase the time to failure and reduce operating costs. In this work, boriding and thermo-reactive deposition (TRD) treatments for the production of boride and carbide layers were performed on the substrates of AISI 15B30 steel to improve tribological characteristics of the surface. The compound phases present in the layers and properties such as hardness, adhesive wear resistance, and layer adhesion were characterized by optical microscope, x-ray diffraction, Knoop microhardness, microadhesive wear test and Rockwell C indentation adhesion according to VDI 3198. The results showed layers with high hardness (1400-2500 HK), greater microadhesive wear resistance (between approximately 10 and 14 times higher than the substrate) and excellent delamination resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 18 March 2020

    In the introduction, “In order to increase steels hardenability, additions of boron between 0.0003 up to 0.003 wt.% improve fracture susceptibility and distortions during cooling” should read “To increase the hardenability of steels, additions of boron between 0.0003 and 0.003 wt.% decrease fracture susceptibility and distortions during cooling.”

References

  1. C.C. Viáfara, M.I. Castro, J.M. Vélez, and A. Toro, Unlubricated Sliding Wear of Pearlitic and Bainitic Steels, Wear, 2005, 259, p 405–411. https://doi.org/10.1016/j.wear.2005.02.013

    Article  CAS  Google Scholar 

  2. H.-R. Lin and G.-H. Cheng, Hardenability Effect of Boron on Carbon Steels, Mater. Sci. Technol., 1987, 3, p 855–859. https://doi.org/10.1179/mst.1987.3.10.855

    Article  CAS  Google Scholar 

  3. N.S. Ghali, H.S. El-Faramawy, and M.M. Eissa, Influence of Boron Additions on Mechanical Properties of Carbon Steel, Miner. Mater. Charact. Eng., 2012, 11, p 995–999. https://doi.org/10.4236/jmmce.2012.1110101

    Article  Google Scholar 

  4. B. Hwang, D.W. Suh, and S.J. Kim, Austenitizing Temperature and Hardenability of Low-Carbon Boron Steels, Scr. Mater., 2011, 64, p 1118–1120. https://doi.org/10.1016/j.scriptamat.2011.03.003

    Article  CAS  Google Scholar 

  5. J. Hardell, A. Yousfi, M. Lund, L. Pelcastre, and B. Prakash, Abrasive Wear of Hardened High Strength Boron Steel, Tribol. Mater. Surf. Interfaces, 2014, 8, p 90–97. https://doi.org/10.1179/1751584X14Y.0000000068

    Article  CAS  Google Scholar 

  6. H. Sierra Restrepo and D. Tobón, Wear Resistance vs. Impact Resistance of Steel AISI, 15B30, Quenched and Tempered, DYNA, 2007, 74, p 125–133

    Google Scholar 

  7. D. Zapata, J. Jaramillo, and A. Toro, Rolling Contact and Adhesive Wear of Bainitic and Pearlitic Steels in Low Load Regime, Wear, 2011, 271, p 393–399. https://doi.org/10.1016/j.wear.2010.10.009

    Article  CAS  Google Scholar 

  8. O.A. Gómez-Vargas, J. Solis-Romero, U. Figueroa-López, M. Ortiz-Domínguez, J. Oseguera-Peña, and A. Neville, Boro-Nitriding Coating on Pure Iron by Powder-Pack Boriding and Nitriding Processes, Mater. Lett., 2016, 176, p 261–264. https://doi.org/10.1016/j.matlet.2016.04.135

    Article  CAS  Google Scholar 

  9. L.C. Casteletti, F.A.P. Fernades, S.C. Heck, C.K.N. de Oliveira, A. Lombardi-Neto, and G.E. Totten, Pack and Salt Bath Diffusion Treatments on Steels, Heat Treat. Prog., 2009, 9, p 49–52

    CAS  Google Scholar 

  10. A.P. Krelling, J.C.G. Milan, and C.E. da Costa, Tribological Behaviour of Borided H13 Steel with Different Boriding Agents, Surf. Eng., 2014, 31, p 581–587. https://doi.org/10.1179/1743294414y.0000000423

    Article  Google Scholar 

  11. X. He, H. Xiao, M. Fevzi Ozaydin, K. Balzuweit, and H. Liang, Low-Temperature Boriding of High-Carbon Steel, Surf. Coat. Technol., 2015, 263, p 21–26. https://doi.org/10.1016/j.surfcoat.2014.12.071

    Article  CAS  Google Scholar 

  12. P. G. B. de Oliveira, R. T. Aureliano, F. E. Mariani, G. E. Totten, and L. C. Casteletti, Boriding of AISI 440B Stainless Steel and Coating Characterization, Proc 29th ASM Heat Treating Society Conference, Columbus, OH, 2017.

  13. G. Kara, G. Purcek, and H. Yanar, Improvement of Wear Behaviour of Titanium by Boriding, Ind. Lubr. Tribol., 2017, 69, p 65–70. https://doi.org/10.1108/ILT-11-2015-0174

    Article  Google Scholar 

  14. A. OrjuelaG, R. Rincón, and J.J. Olaya, Corrosion Resistance of Niobium Carbide Coatings Produced on AISI, 1045 Steel Via Thermo-Reactive Diffusion Deposition, Surf. Coat. Technol., 2014, 259, p 667–675. https://doi.org/10.1016/j.surfcoat.2014.10.012

    Article  CAS  Google Scholar 

  15. R. Soltani, M.H. Sohi, M. Ansari, A. Haghighi, H.M. Ghasemi, and F. Haftlang, Evaluation of Niobium Carbide Coatings Produced on AISI, L2 Steel Via Thermo-Reactive Diffusion Technique, Vacuum, 2017, 146, p 44–51. https://doi.org/10.1016/j.vacuum.2017.09.023

    Article  CAS  Google Scholar 

  16. A. Ghadi, M. Soltanieh, H. Saghafian, and Z.G. Yang, Growth Kinetics and Microstructure of Composite Coatings on H13 by Thermal Reactive Diffusion, Surf. Coat. Technol., 2017, 325, p 318–326. https://doi.org/10.1016/j.surfcoat.2017.06.068

    Article  CAS  Google Scholar 

  17. M. Cuppari and S. Santos, Physical Properties of the NbC Carbide, Metals, 2016, 6, p 250–267. https://doi.org/10.3390/met6100250

    Article  CAS  Google Scholar 

  18. F. Castillejo, D. Marulanda, O. Rodriguez, and J. Olaya, Electrical Furnace for Producing Carbide Coatings Using the Thermoreactive Deposition/Diffusion Technique, DYNA, 2011, 78, p 192–197

    Google Scholar 

  19. M. Aghaie-Khafri and F. Fazlalipour, Vanadium Carbide Coatings on Die Steel Deposited by The Thermo-Reactive Diffusion Technique, J. Phys. Chem. Solids, 2008, 69, p 2465–2470. https://doi.org/10.1016/j.jpcs.2008.04.040

    Article  CAS  Google Scholar 

  20. B.L. Strahin, D.D. Shreeram, and G.L. Doll, Properties and Tribological Performance of Vanadium Carbide Coatings on AISI, 52100 Steel Deposited by Thermoreactive Diffusion, JOM, 2017, 69, p 1160–1164. https://doi.org/10.1007/s11837-017-2370-2

    Article  CAS  Google Scholar 

  21. I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, UK, Oxford, 2017

    Google Scholar 

  22. R.I. Trezona and I.M. Hutchings, Three-Body Abrasive Wear Testing of Soft Materials, Wear, 1999, 233, p 209–221. https://doi.org/10.1016/S0043-1648(99)00183-0

    Article  Google Scholar 

  23. C.K.N. Oliveira, R.M. Riofano, and L.C. Casteletti, Micro-Abrasive Wear Test of Niobium Carbide Layers Produced on AISI, H13 and M2 Steels, Surf. Coat. Technol., 2006, 200, p 5140–5144. https://doi.org/10.1016/j.surfcoat.2005.05.037

    Article  CAS  Google Scholar 

  24. K.L. Rutherford and I.M. Hutchings, Theory and Application of a Micro-Scale Abrasive Wear Test, J. Test. Eval., 1997, 25, p 250–260. https://doi.org/10.1520/JTE11487J

    Article  CAS  Google Scholar 

  25. N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143-144, p 481–485. https://doi.org/10.1016/S0924-0136(03)00300-5

    Article  Google Scholar 

  26. Y. Kayali, Y. Yalcin, and Ş. Taktak, Adhesion and Wear Properties of Boro-Tempered Ductile Iron, Mater. Des., 2011, 32, p 4295–4303. https://doi.org/10.1016/j.matdes.2011.04.014

    Article  CAS  Google Scholar 

  27. T. Arai and S. Harper, Thermoreactive Deposition/Diffusion Process, ASM Handbook, ASM International, Cleveland, 1991

    Google Scholar 

  28. A.K. Sinha, Boriding (Boronizing), ASM Handbook Heat Treating, Vol 4, ASM International, Cleveland, 1999

    Google Scholar 

  29. M. Tabur, M. Izciler, F. Gul, and I. Karacan, Abrasive Wear Behavior of Boronized AISI, 8620 Steel, Wear, 2009, 266, p 1106–1112. https://doi.org/10.1016/j.wear.2009.03.006

    Article  CAS  Google Scholar 

  30. A.S. Pomel’nikova, M.N. Shipko, and M.A. Stepovich, Features of Structural Changes Due to the Formation of the Boride Crystal Structure in Steels, J. Surf. Investig. X-ray Synchrotron Neutron Tech., 2011, 5, p 298–304. https://doi.org/10.1134/S1027451011030165

    Article  CAS  Google Scholar 

  31. C. Martini, G. Palombarini, and M. Carbucicchio, Mechanism of Thermochemical Growth of Iron Borides on Iron, J. Mater. Sci., 2004, 39, p 933–937. https://doi.org/10.1023/B:JMSC.0000012924.74578.87

    Article  CAS  Google Scholar 

  32. G. Kartal, S. Timura, V. Sistab, O.L. Eryilmazb, and A. Erdemirb, The Growth of Single Fe2B Phase on Low Carbon Steel Via Phase Homogenization in Electrochemical Boriding (PHEB), Surf. Coat. Technol., 2011, 206, p 2005–2011. https://doi.org/10.1016/j.surfcoat.2011.08.049

    Article  CAS  Google Scholar 

  33. I. Uslu, H. Comert, M. Ipek, O. Ozdemir, and C. Bindal, Evaluation of Borides Formed on AISI, P20 Steel, Mater. Des., 2007, 28, p 55–61. https://doi.org/10.1016/j.matdes.2005.06.013

    Article  CAS  Google Scholar 

  34. F. Wever and A. Mueller, Ueber das Zweistoffsystem Eisen-Bor und ueber die Struktur des Eisenborides Fe4B2, Zeitschrift fuer Anorganische und Allgemeine Chemie, 1930, 192, p 317–336. https://doi.org/10.1002/zaac.19301920125

    Article  CAS  Google Scholar 

  35. T. Bjurstroem, Roentgenanalyse der Systeme Eisen-Bor, Kobalt-Bor und Nickel-Bor, Arkiv foer Kemi, Mineralogi och Geologi, 1930, 11, p 1–12

    Google Scholar 

  36. K. Nakamura and M. Yashima, Crystal Structure of (NaCl)-Type Transition Metal Monocarbides MC (M = V, Ti, Nb, Ta, Hf, Zr), a Neutron Powder Diffraction Study, Mater. Sci. Eng. B Adv. Funct. Solid-State Mater., 2008, 148, p 69–72. https://doi.org/10.1016/j.mseb.2007.09.040

    Article  CAS  Google Scholar 

  37. A.H. Ghaneya and O.N. Carlson, Investigation of Vanadium Solid Solution and Zeta-Phase Regions of The Vanadium-Carbon System, J. Less-Common Met., 1985, 109, p 57–69. https://doi.org/10.1016/0022-5088(85)90107-9

    Article  CAS  Google Scholar 

  38. X.S. Fan, Z.G. Yang, C. Zhang, Y.D. Zhang, and H.Q. Che, Evaluation of Vanadium Carbide Layers on AISI, H13 Obtained by Thermo-Reactive Deposition/Diffusion Technique, Surf. Coat. Technol., 2010, 205, p 641–646. https://doi.org/10.1016/j.surfcoat.2010.07.065

    Article  CAS  Google Scholar 

  39. B. Matijević, A Model of Vanadium Carbide Growth on Steel Surfaces Obtained by Thermo Reactive Deposition, JOM, 2013, 65, p 1395–1402. https://doi.org/10.1007/s11837-013-0763-4

    Article  CAS  Google Scholar 

  40. A. Miura, T. Takei, N. Kumada, S. Wada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Bonding Preference of Carbon, Nitrogen, and Oxygen in Niobium-Based Rock-Salt Structures, Inorg. Chem., 2013, 52, p 9699–9701. https://doi.org/10.1021/ic400830b

    Article  CAS  Google Scholar 

  41. S. Taktak and S. Ulu, Wear Behaviour of TRD Carbide Layers at Elevated Temperatures, Ind. Lubr. Tribol., 2010, 62, p 37–45. https://doi.org/10.1108/00368791011012452

    Article  Google Scholar 

  42. S. Sen and U. Sen, Sliding Wear Behavior of Niobium Carbide Coated AISI, 1040 Steel, Wear, 2008, 264, p 219–225. https://doi.org/10.1016/j.wear.2007.03.006

    Article  CAS  Google Scholar 

  43. C. Martini, G. Palombarini, G. Poli, and D. Prandstraller, Sliding and Abrasive Wear Behaviour of Boride Coatings, Wear, 2004, 256, p 608–613. https://doi.org/10.1016/j.wear.2003.10.003

    Article  CAS  Google Scholar 

  44. E. Medvedovski, J. Jiang, and M. Robertson, Boride-Based Coatings for Protection of Cast Iron Against Wear, Adv. Appl. Ceram., 2016, 115, p 483–494. https://doi.org/10.1080/17436753.2016.1195527

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES)–Finance Code 001. The authors would also like to thank the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) Finance code 305.294/2015-6 and University of São Paulo (USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Magalhães Triani.

Ethics declarations

Conflict of interest

The authors of this manuscript declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to JMEP selected from presentations at the 30th Heat Treating Society Conference and Exposition held October 15-17, 2019, in Detroit, Michigan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triani, R.M., Gomes, L.F.A., Neto, A.L. et al. Production and Characterization of Boride and Carbide Layers on AISI 15B30 Steel. J. of Materi Eng and Perform 29, 3534–3541 (2020). https://doi.org/10.1007/s11665-020-04698-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04698-w

Keywords

Navigation