Skip to main content
Log in

Effect of the Quenching and Tempering Temperatures on the Microstructure and Mechanical Properties of H13 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

H13 steel is a typical hot work die steel with good strength and toughness that is often used to manufacture high-temperature disk springs. However, disk springs occasionally fail after use in the petrochemical industry. Therefore, the effects of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel after quenching and tempering processes are investigated herein. The results show that the lath width (lath) controls the strength of the H13 steel. The precipitated phases mainly comprise Cr23C6, Cr7C3 and VC. The coarsening of the Cr23C6 phase reduces the hardness, while reducing the dislocation density improves the toughness of the H13 steels after quenching and tempering. When the quenching temperature is 1040 °C and the tempering temperature is 570 °C, the H13 steel after quenching and tempering has a uniform microstructure with good strength and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.A. Dobrzanski, J. Mazurkiewicz, E. Hajduczek, and J. Madejski, Comparison of the Thermal Fatigue Resistance and Structure of the 47CrMoWVTiCeZr16-26-8 Hot-Work Tool Steel with X40CrMoV5-1 Type One, J. Mater. Process. Technol., 2001, 113(1–3), p 527–538

    Article  CAS  Google Scholar 

  2. A. Persson, S. Hogmark, and J. Bergstrom, Simulation and Evaluation of Thermal Fatigue Cracking of Hot Work Tool Steels, Int. J. Fatigue, 2004, 26(10), p 1095–1107

    Article  CAS  Google Scholar 

  3. A. Persson, S. Hogmark, and J. Bergstrom, Failure Modes in Field-Tested Brass Die Casting Dies, J. Mater. Process. Technol., 2004, 148(1), p 108–118

    Article  CAS  Google Scholar 

  4. Y.F. Wang, Z.C. Liu, and W.B. Fan, The Band Structure of H13 Steel and Its Elimination Method, Shanghai Met., 2005, 06, p 43–45

    CAS  Google Scholar 

  5. H. Jimenez, D.M. Devia, V. Benavides, A. Devia, Y.C. Arango, and P.J. Arando, Thermal Protection of H13 Steel by Growth of (TiAl)N Films by PAPVD Pulsed arc Technique, Mater Charact., 2008, 59, p 1070–1077

    Article  CAS  Google Scholar 

  6. Q. Tong, X.C. Wu, and N. Min, Research on Hot-Working Die Steel SDH3 with High Hot Strength, J. Iron Steel, 2010, 22, p 50–54

    Google Scholar 

  7. S. Li, X.C. Wu, X.X. Li, J.W. Li, and X.J. He, Wear Characteristics of Mo-W-Type Hot-Work Steel at High Temperature, Tribol. Lett., 2016, 64(32), p 1–12

    CAS  Google Scholar 

  8. S. Li, X.C. Wu, S.H. Chen, and J.W. Li, Wear Resistance of H13 and a New Hot-Work Die Steel at High Temperature, J. Mater. Eng. Perform., 2016, 25, p 2993–3006

    Article  CAS  Google Scholar 

  9. X.H. Pan and Z.C. Zhou, The Study of the Chemical Composition and Improvement and Development for the H13 Hot Work Die & Mold Steel, Mold Manuf., 2006, 4, p 78–85.

    Google Scholar 

  10. P.S. Babu, Effects of Cryogenic Treatment on H13 Tool Steel–An Experimental Investigation, Int. J. Metall. Mater., 2013, 3, p 53–58

    CAS  Google Scholar 

  11. C. Xie, X. Wu, N. Min, and Y. Shen, Carbon Segregation Behavior of High Carbon High-Alloy Steel During Deep Cryogenic Treatment Using 3DAP, Acta Metall. Sin., 2015, 15, p 325–332

    Google Scholar 

  12. M. Pérez and F.J. Belzunce, The Effect of Deep Cryogenic Treatments on the Mechanical Properties of an AISI, H13 Steel, Mater. Sci. Eng. A, 2015, 624, p 32–40

    Article  Google Scholar 

  13. G.H. Yan, X.M. Huang, Y.Q. Wang et al., Effects of Heat Treatment on Mechanical Properties of H13 Steel, Met. Sci. Heat Treat., 2010, 52, p 393–395

    Article  CAS  Google Scholar 

  14. J. Li, J. Li, L.L. Wang, and L.F. Li, Study on Carbide in Forged and Annealed H13 Hot Work Die Steel, High Temp. Mater. Proc., 2015, 34, p 593–598

    Google Scholar 

  15. L.A. Norstrom and N. Ohrberg, Development of Hot-Work Tool Steel for High-Temperature Applications, Met. Technol., 1981, 8, p 22–26

    Article  Google Scholar 

  16. S.J. Fu, Influence of Quenching Temperature on Microstructure and Properties of 25MnV Steel, Therm. Process., 2010, 39(20), p 156–157

    Google Scholar 

  17. Y.R. Liu, D. Ye, Q.L. Yong, J. Su, K.Y. Zhao, and W. Jiang, Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel, J. Iron Steel Res. Int., 2011, 18(11), p 60–66

    Article  CAS  Google Scholar 

  18. D.W. Smith and R.F. Hehemann, Influence of Structural Parameters on the Yield Strength of Tempered Martensite and Lower Bainite, J. Iron Steel Inst., 1971, 209(5), p 478–481

    Google Scholar 

  19. H.H. Liu, P.X. Fu, H.W. Liu, C. Sun, X.P. Ma, and D.Z. Li, Microstructure Evolution and Mechanical Properties in 718H Pre-hardened Mold Steel During Tempering, Mater. Sci. Eng. A, 2018, 709, p 181–192

    Article  CAS  Google Scholar 

  20. P. Yan, Z. Liu, H. Bao, Y.Q. Weng, and W. Liu, Effect of Tempering Temperature on the Toughness of 9Cr-3W-3Co Martensitic Heat Resistant Steel, Mater. Des., 2014, 54, p 874–879

    Article  CAS  Google Scholar 

  21. T. Maki, K. Tsuzaki, and I. Tamura, The Morphology of Microstructure Composed of Lath Martensites in steels, Trans ISIJ, 1980, 20(4), p 207–214

    Article  CAS  Google Scholar 

  22. J.M. Marder and A.R. Marder, The Morphology of Iron–Nickel Massive Martensite, Trans. Am. Soc. Met., 1969, 62(1), p 1–10

    CAS  Google Scholar 

  23. C.F. Wang, Study on Strength and Toughness Structure Control Unit of Low Alloy Martensitic Steel, Central Iron & Steel Research Institute, Beijing, 2008

    Google Scholar 

  24. S.J. Chen and Q. Yu, The Role of Angle Boundary in Deformation of Titanium and Its Size Effect, Scr. Mater., 2019, 163, p 148–151

    Article  CAS  Google Scholar 

  25. Q.L. Yong, The Second Phase of the Steel Materials, Metallurgical Industry Press, Beijing, 2006

    Google Scholar 

  26. D.L. Ye and J.H. Hu, Practical Inorganic Thermodynamic Data Manual, 2nd ed., Metallurgical Industry Press, Beijing, 2002

    Google Scholar 

  27. N. Mebarki, D. Delagnesa, P. Lamesle et al., Relationship Between Microstructure and Mechanical Properties of a 5% Cr Tempered Martensitic Tool Steel, Mater. Sci. Eng., A, 2004, 387–389, p 171–175

    Article  Google Scholar 

  28. D. Delagnes, P. Lamesle, M.H. Mathon et al., Influence of Silicon Content on the Precipitation of Secondary Carbides and Fatigue Properties of a 5% Cr Tempered Martensitic Steel, Mater. Sci. Eng., A, 2005, 394, p 435–444

    Article  Google Scholar 

  29. X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening Behavior of M23C6 Carbides After Ageing or Thermal Fatigue in AISI, H13 Steel With Niobium, Int. J. Fatigue, 2006, 28, p 175–182

    Article  CAS  Google Scholar 

  30. Q. Ma, B.C. Liu, and Z.C. Wang, Breakup of Eutectic Carbide Network of White Cast Irons at High Temperatures, J. Mater. Sci., 1995, 311, p 3383–3386

    Google Scholar 

  31. W.Y. Zhang, Ostwald Growth of Spheroidal Carbide During Isothermal Spheroidization, Mater. Sci. Technol., 1993, 1(4), p 44–48

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11772147), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB460016) and the Introduce Talent Special Funding for Scientific Research at Nanjing Tech University (Grant No. 39802124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Xiaofeng Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, Z. & Lu, X. Effect of the Quenching and Tempering Temperatures on the Microstructure and Mechanical Properties of H13 Steel. J. of Materi Eng and Perform 29, 1849–1859 (2020). https://doi.org/10.1007/s11665-020-04686-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04686-0

Keywords

Navigation