Skip to main content

Advertisement

Log in

Microstructures and Properties of Graphite Nanoflake/6061Al Matrix Composites Fabricated via Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two types of graphite nanoflakes (GNFs), GNFA for 30-100 μm in diameter and less than 100 nm in thickness, and GNFB for 0.5-10 μm in diameter and less than 20 nm in thickness, were used to fabricate GNF/6061Al matrix composites with GNF fractions ranging from 5 to 15 wt.% via spark plasma sintering (SPS) at 610 °C under a load of 35 MPa. The effects of GNF size and content on microstructures and properties of the composites were investigated. The results show that uniform mixing of GNFs in the 6061Al powder was achieved through mechanical and ultrasonic stirring. When the GNFs were well dispersed, the composites were dense. An interfacial zone of 15-18 nm in thickness was formed and composed of two layers, a poorly crystalline layer and an amorphous layer. No Al4C3 was detected in the interfacial zone. The relative densities, bending strengths, thermal conductivities (TCs), and coefficients of thermal expansion (CTEs) (room temperature to 100 °C) of the 10 wt.% GNFA/6061Al matrix composites were 98.5%, 120 MPa, 155 W m−1 K−1 in the XY direction and 61 W m−1 K−1 in the Z direction, and 14.2 ppm K−1 in the XY direction and 12.1 ppm K−1 in the Z direction, respectively. Those of the 10 wt.% GNFB/6061Al matrix composites were 97.8%, 70 MPa, 110 W m−1 K−1 in the XY direction and 90 W m−1 K−1 in the Z direction, and 15.4 ppm K−1 in the XY direction and 14.7 ppm K−1 in the Z direction, respectively. The GNFB/6061Al matrix composites showed lower differences of TC and CTE between the XY and Z directions. Therefore, the anisotropy of the microstructures and properties of the composites in three dimensions were significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Yuan, X. Li, Z. Dong, A. Westwood, Z.W. Cui, Y. Cong, H.D. Du, and F.Y. Kang, Graphite Blocks with Preferred Orientation and High Thermal Conductivity, Carbon, 2012, 50, p 175–182

    CAS  Google Scholar 

  2. C. Zweben, Ultrahigh-Thermal-Conductivity Packaging Materials, in IEEE: Twenty First Annual IEEE Semiconductor Thermal Measurement and Management Symposium, March 15–17, 2005 (IEEE, San Jose, CA, USA, 2005).

  3. S.S. Sidhu, S. Kumar, and A. Batish, Metal Matrix Composites for Thermal Management: A Review, Crit. Rev. Solid State Mater. Sci., 2016, 41, p 132–157

    CAS  Google Scholar 

  4. J.D. Mathias, P.M. Geffroy, and J.F. Silvain, Architectural Optimization for Microelectronic Packaging, Appl. Therm. Eng., 2009, 29, p 2391–2395

    Google Scholar 

  5. V. Oddone, B. Boerner, and R. Reich, Composites of Aluminum Alloy and Magnesium Alloy with Graphite Showing Low Thermal Expansion and High Specific Thermal Conductivity, Sci. Technol. Adv. Mater., 2017, 8, p 180–186

    Google Scholar 

  6. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2008, 47, p 570–577

    Google Scholar 

  7. M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-powder Method, Prog. Nat. Sci., 2014, 24, p 101–108

    CAS  Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907

    CAS  Google Scholar 

  9. S.N. Alam and L. Kumar, Mechanical Properties of Aluminum-Based Metal Matrix Composites Reinforced with Graphite Nanoplatelets, Mater. Sci. Eng. A, 2016, 667, p 16–32

    CAS  Google Scholar 

  10. T.T. Liu, X.B. He, L. Zhang, Q. Liu, and X.H. Qu, Fabrication and Thermal Conductivity of Short Graphite Fiber/Al Composites by Vacuum Pressure Infiltration, J. Compos. Mater., 2014, 48, p 2207–2214

    Google Scholar 

  11. A. Saboori, M. Pavese, and C. Badini, Development of Al- and Cu-Based Nanocomposites Reinforced by Graphene Nanoplatelets: Fabrication and Characterization, Front. Mater. Sci., 2017, 11, p 171–181

    Google Scholar 

  12. X. Gao, H. Yue, E. Guo, H. Zhang, X.Y. Lin, L.H. Yao, and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p 601–607

    CAS  Google Scholar 

  13. A. Boden, B. Boerner, P. Kusch, I. Firkowska, and S. Reich, Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites, Nano Lett., 2014, 14, p 3640–3644

    CAS  Google Scholar 

  14. G. Li and B. Xiong, Effects of Graphene Content on Microstructures and Tensile Property of Graphene-Nanosheets/Aluminum Composites, J. Alloys Compd., 2017, 697, p 31–36

    CAS  Google Scholar 

  15. M. Tokita, Trends in Advanced SPS Spark Plasma Sintering Systems and Technology, J. Soc. Powder. Technol. Jpn., 1993, 30, p 790–804

    CAS  Google Scholar 

  16. K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, and M. Ito, Processing of Al/SiC Composites in Continuous Solid–Liquid Co-existent State by SPS and Their Thermal Properties, Compos. B, 2012, 4, p 2012–2019

    Google Scholar 

  17. X.Z. Mao, Y.Q. Huang, and B.H. Wang, Fabrication, Microstructures and Properties of 50 vol.%/SiCp/6061Al Composites via a Pressureless Sintering Technique, Powder Metall., 2017, 61, p 1–9

    Google Scholar 

  18. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene Reinforced Metal and Ceramic Matrix Composites: A Review, Int. Mater. Rev., 2016, 62, p 241–302

    Google Scholar 

  19. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 2016, 97, p 187401

    Google Scholar 

  20. C. Nabil, M. Diaa, D. Florence, C. Nathalie, Y.F. Lu, and J.F. Silvain, Effect of Flake Powder Metallurgy on Thermal Conductivity of Graphite Flakes Reinforced Aluminum Matrix Composites, J. Mater. Sci., 2018, 53, p 8180–8192

    Google Scholar 

  21. T. Varol and A. Canakci, Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy, Met. Mater. Int., 2015, 21, p 704–712

    CAS  Google Scholar 

  22. A. Saboori, M. Pavese, and C. Badini, Microstructure and Thermal Conductivity of Al-Graphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques, Acta Metall. Sin., 2017, 30, p 675–687

    CAS  Google Scholar 

  23. D. Lin, L.C. Richard, and G.J. Cheng, Single-Layer Graphene Oxide Reinforced Metal Matrix Composites by Laser Sintering: Microstructure and Mechanical Property Enhancement, Acta Mater., 2014, 80, p 183–193

    CAS  Google Scholar 

  24. K. Bo, T.X. Fan, and J.M. Ru, Improved Wetting and Thermal Properties of Graphite-Cu Composite by Cr-Solution Immersion Method, Diam. Relat. Mater., 2016, 65, p 191–197

    Google Scholar 

  25. C. Zhou, G. Ji, Z. Chen, M.L. Wang, A. Addad, D. Schryvers, and H.W. Wang, Fabrication, Interface Characterization and Modeling of Oriented Graphite Flakes/Si/Al Composites for Thermal Management Applications, Mater. Des., 2014, 63, p 719–728

    CAS  Google Scholar 

  26. M.P. Liu, T.H. Jiang, X.F. Xie, Q. Liu, X.F. Li, and J.R. Hans, Microstructure Evolution and Dislocation Configurations in Nanostructured Al-Mg Alloys Processed by High Pressure Torsion, Trans. Nonferr. Met. Soc. China, 2014, 24, p 3848–3857

    CAS  Google Scholar 

  27. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577

    CAS  Google Scholar 

  28. W. Li, Y. Liu, and G. Wu, Preparation of Graphite Flakes/Al with Preferred Orientation and High Thermal Conductivity by Squeeze Casting, Carbon, 2015, 95, p 545–551

    CAS  Google Scholar 

  29. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler, and P.J. Uggowitzer, Aluminium Carbide Formation in Interpenetrating Graphite/Aluminium Composites, Mater. Sci. Eng. A, 2007, 448, p 1–6

    Google Scholar 

  30. T. Etter, J. Kuebler, T. Frey, P. Schulz, J.F. Löffler, and P.J. Uggowitzer, Strength and Fracture Toughness of Interpenetrating Graphite/Aluminium Composites Produced by the Indirect Squeeze Casting Process, Mater. Sci. Eng. A, 2004, 386, p 61–67

    Google Scholar 

  31. J. Leng, G. Wu, Q. Zhou, Z.Y. Dou, and X.L. Huang, Mechanical Properties of SiC/Gr/Al Composites Fabricated by Squeeze Casting Technology, Scr. Mater., 2008, 59, p 619–622

    CAS  Google Scholar 

  32. J.K. Chen and I.S. Huang, Thermal Properties of Aluminum-Graphite Composites by Powder Metallurgy, Compos. B, 2013, 44, p 698–703

    CAS  Google Scholar 

  33. F. Akhlaghi and A. Zare-Bidaki, Influence of Graphite Content on the Dry Sliding and Oil Impregnated Sliding Wear Behavior of Al2024/Graphite Composites Produced by In Situ Powder Metallurgy Method, Wear, 2009, 266, p 37–45

    CAS  Google Scholar 

  34. Y. Xu, Research on Preparation and Properties of Graphite/Copper Composites with High Thermal Conductivity, Master Thesis, Huazhong University of Science and Technology, China, vol 1 (2013), p. 33. (In Chinese).

  35. J.Z. Xu, B.Z. Gao, and F.Y. Kang, A Reconstruction of Maxwell Model for Effective Thermal Conductivity of Composite Materials, Appl. Therm. Eng., 2016, 102, p 972–979

    Google Scholar 

  36. M. Xiao, X.W. Zhang, W.T. Xiao, J.J. Du, H.H. Song, and Z.K. Ma, The Influence of Chemical Constitution on the Structure and Properties of Polyimide Fibre and Their Graphite Fibre, Polymer, 2019, 165, p 142–151

    CAS  Google Scholar 

  37. P.M. Adams, H.A. Katzman, G.S. Rellick, and G.W. Stupian, Characterization of High Thermal Conductivity Carbon Fibers and a Self-reinforced Graphite Panel, Carbon, 1998, 36, p 233–245

    CAS  Google Scholar 

  38. L. Wei, R. Zhang, and C.P. Wong, Modeling of Thermal Conductivity of Graphite Nanosheet Composites, J. Electron. Mater., 2010, 39, p 268–272

    Google Scholar 

  39. K. Hiroki, M. Takamichi, K. Akira, Y.F. Lu, and J.F. Silvain, Interfacial Microstructure of Graphite Flake Reinforced Aluminum Matrix Composites Fabricated via Hot Pressing, Compos. A, 2015, 73, p 125–131

    Google Scholar 

  40. J.B. Nelson and D.P. Riley, The Thermal Expansion of Graphite from 15 to 800 °C: Part I. Experimental, Proc. Phys. Soc., 1945, 57, p 477

    CAS  Google Scholar 

  41. I. Firkowska, A. Boden, B. Boerner, and S. Reich, The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites, Nano Lett., 2015, 15, p 4745–4751

    CAS  Google Scholar 

  42. P.S. Turner, Thermal-Expansion Stresses in Reinforced Plastics, J. Res. Natl. Bur. Stand., 1946, 37, p 239–250

    CAS  Google Scholar 

  43. E.H. Kerner, The Elastic and Thermo-Elastic Properties of Composite Media, Proc. Phys. Soc. B, 1956, 69, p 808–813

    Google Scholar 

  44. X.M. Zhu, J.K. Yu, and X.Y. Wang, Microstructure and Properties of Al/Si/SiC Composites for Electronic Packaging, Trans. Nonferr. Met. Soc., 2012, 22, p 1686–1692

    CAS  Google Scholar 

  45. O.L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Spence, and T. Weng, Elastic Constants of Compression-Annealed Pyrolytic Graphite, J. Appl. Phys., 1970, 41, p 3373–3382

    CAS  Google Scholar 

  46. J. Sun, G.H. Chen, B.H. Wang, G.D. Chen, and W.M. Tang, Fabrication, Microstructures, and Properties of 50 vol.% SiCp/6061Al Composites via Hot Pressing, J. Mater. Eng. Perform., 2019, 28, p 2697–2706

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by International Science & Technology Cooperation Program of China (Grant Numbers 2014DFA50860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Chang, H., Sun, J. et al. Microstructures and Properties of Graphite Nanoflake/6061Al Matrix Composites Fabricated via Spark Plasma Sintering. J. of Materi Eng and Perform 29, 1235–1244 (2020). https://doi.org/10.1007/s11665-020-04676-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04676-2

Keywords

Navigation