Skip to main content
Log in

Effect of Tungsten Carbide Addition on the Wear Resistance of Flame-Sprayed Self-Lubricating Ni-Graphite Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ni-graphite coatings are widely used in industrial fields to improve the self-lubrication property of metallic surfaces. In this study, the effect of tungsten carbide (WC) addition on the microstructure, hardness and wear resistance of flame-sprayed Ni-graphite coatings was investigated. Microstructure examination of coatings shows that WC particles adhered well to Ni matrix but tended to come into contact with each other or graphite particles with the increasing addition amount. The hardness of the Ni-based graphite/WC composite coating depended on the WC content and reached its maximum at the WC addition amount of 30 wt.%. Tribological tests reveal that when the WC content was increased from 0 to 30 wt.%, the wear rate decreased about 42% (from about 5.0 × 10−5 to 2.9 × 10−5 mm3 N−1 m−1), while the maximum friction coefficient increased only about 19% (from about 0.16 to 0.19). The graphite in the coatings contributed to low friction coefficient with the formation of self-lubricating tribofilm. The wear mechanism of the coatings was mainly delamination, and well-embedded WC particles inhibited the propagation of delamination cracks. Results show that the Ni-based graphite/WC composite coating with 30 wt.% WC achieved a good balance between the wear resistance and the self-lubrication property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.W. Wong and S.C. Tung, Overview of Automotive Engine Friction and Reduction Trends-Effects of Surface, Material, and Lubricant-Additive Technologies, Friction, 2016, 4, p 1–28. https://doi.org/10.1007/s40544-016-0107-9

    Article  CAS  Google Scholar 

  2. A. Tyagi, R.S. Walia, Q. Murtaza, S.M. Pandey, P.K. Tyagi, and B. Bajaj, A Critical Review of Diamond Like Carbon Coating for Wear Resistance Applications, Int. J. Refract. Met. Hard Mater., 2019, 78, p 107–122. https://doi.org/10.1016/j.ijrmhm.2018.09.006

    Article  CAS  Google Scholar 

  3. S. Zhu, J. Cheng, Z. Qiao, and J. Yang, High Temperature Solid-Lubricating Materials: a Review, Tribol. Int., 2019, 133, p 206–223. https://doi.org/10.1016/j.triboint.2018.12.037

    Article  CAS  Google Scholar 

  4. M. Khadem, O.V. Penkov, H.K. Yang, and D.E. Kim, Tribology of Multilayer Coatings for Wear Reduction: A Review, Friction, 2017, 5, p 248–262. https://doi.org/10.1007/s40544-017-0181-7

    Article  CAS  Google Scholar 

  5. Z.X. Chen, X.P. Ren, L.M. Ren, T.C. Wang, and X.W. Qi, Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon, Coatings, 2018, https://doi.org/10.3390/coatings8020083

    Article  Google Scholar 

  6. L.M. Ren, T.C. Wang, Z.X. Chen, Y.Y. Li, and L.H. Qian, Self-Lubricating PEO-PTFE Composite Coating on Titanium, Metals, 2019, https://doi.org/10.3390/met9020170

    Article  Google Scholar 

  7. R. Soltani, M. Heydarzadeh-Sohi, M. Ansari, F. Afsari, and Z. Valefi, Effect of APS Process Parameters on High-Temperature Wear Behavior of Nickel-Graphite Abradable Seal Coatings, Surf. Coat. Technol., 2017, 321, p 403–408. https://doi.org/10.1016/j.surfcoat.2017.05.004

    Article  CAS  Google Scholar 

  8. W.H. Xue, S.Y. Gao, D.L. Duan, L. Wang, Y. Liu, and S. Li, Study on The High-Speed Rubbing Wear Behavior Between Ti6Al4V Blade and Nickel-Graphite Abradable Seal Coating, J. Tribol. T. ASME, 2017, https://doi.org/10.1115/1.4033454

    Article  Google Scholar 

  9. J.J. Tang, K. Liu, Q.Z. Yang, Y.H. Wang, P. Zhang, Y. Wang, L. Zhao, Q.Q. Fu, Z.H. Han, and Y. Bai, The Influence of Size and Distribution of Graphite on the Friction and Wear Behavior of Ni-Graphite Coatings, Surf. Coat. Technol., 2014, 252, p 48–55. https://doi.org/10.1016/j.surfcoat.2014.04.063

    Article  CAS  Google Scholar 

  10. B. Cai, Y.F. Tan, Y.Q. Tu, X.L. Wang, and H. Tan, Tribological Properties of Ni-Base Alloy Composite Coating Modified by Both Graphite and TiC Particles, Trans. Nonferrous Met. Soc. China, 2011, 21, p 2426–2432. https://doi.org/10.1016/s1003-6326(11)61031-5

    Article  CAS  Google Scholar 

  11. T. Chen, F. Wu, H.J. Wang, and D.F. Liu, Laser Cladding In-situ Ti(C, N) Particles Reinforced Ni-Based Composite Coatings Modified with CeO2 Nanoparticles, Metals, 2018, 8, p 4. https://doi.org/10.3390/met8080601

    Article  CAS  Google Scholar 

  12. S.M. Huang, D.Q. Sun, W.Q. Wang, and H.Y. Xu, Microstructures and Properties of In-situ TiC Particles Reinforced Ni-Based Composite Coatings Prepared by Plasma Spray Welding, Ceram. Int., 2015, 41, p 12202–12210. https://doi.org/10.1016/j.ceramint.2015.06.041

    Article  CAS  Google Scholar 

  13. M.A. Farrokhzad and T.I. Khan, Sliding Wear Performance of Nickel-Based Cermet Coatings Composed of WC and Al2O3 Nanosized Particles, Surf. Coat. Technol., 2016, 304, p 401–412. https://doi.org/10.1016/j.surfcoat.2016.07.014

    Article  CAS  Google Scholar 

  14. J. Yang, Y.J. Zhang, X.Q. Zhao, Y.L. An, H.D. Zhou, J.M. Chen, and G. Hou, Tribological Behaviors of Plasma Sprayed CuAl/Ni-Graphite Composite Coating, Tribol. Int., 2015, 90, p 96–103. https://doi.org/10.1016/j.triboint.2015.04.022

    Article  CAS  Google Scholar 

  15. I. Konyashin, A.A. Zaitsev, D. Sidorenko, and E.A. Levashov, Wettability of Tungsten Carbide by Liquid Binders in WC-Co Cemented Carbides: Is It Complete for All Carbon Contents?, Int. J. Refract. Met. Hard Mater., 2017, 62, p 134–148. https://doi.org/10.1016/j.ijrmhm.2016.06.006

    Article  CAS  Google Scholar 

  16. P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.L. Bai, and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257, p 142–147. https://doi.org/10.1016/j.wear.2003.10.019

    Article  CAS  Google Scholar 

  17. M.R. Fernández, A. García, J.M. Cuetos, R. González, A. Noriega, and M. Cadenas, Effect of Actual WC Content on the Reciprocating Wear of a Laser Cladding NiCrBSi Alloy Reinforced with WC, Wear, 2015, 324-325, p 80–89. https://doi.org/10.1016/j.wear.2014.12.021

    Article  CAS  Google Scholar 

  18. J.S. Xu, X.C. Zhang, F.Z. Xuan, Z.D. Wang, and S.T. Tu, Microstructure and Sliding Wear Resistance of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle, J. Mater. Eng. Perform., 2012, 21, p 1904–1911. https://doi.org/10.1007/s11665-011-0109-8

    Article  CAS  Google Scholar 

  19. X. Wang, L.F. Zhu, Z.M. Zhou, G. Liu, E.Y. Liu, and Z.X. Zeng, Tribological Properties of WC-Reinforced Ni-Based Coatings under Different Lubricating Conditions, J. Therm. Spray Technol., 2015, 24, p 1323–1332. https://doi.org/10.1007/s11666-015-0290-7

    Article  CAS  Google Scholar 

  20. T.A. Ben Mahmud, A.M. Atieh, and T.I. Khan, The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions, J. Mater. Eng. Perform, 2017, 26, p 3507–3515. https://doi.org/10.1007/s11665-017-2739-y

    Article  CAS  Google Scholar 

  21. T. Usana-ampaipong, C. Dumkum, K. Tuchinda, V. Tangwarodomnukun, B. Teeraprawatekul, and H. Qi, Surface and Subsurface Characteristics of NiCrBSi Coating with Different WC Amount Prepared by Flame Spray Method, J. Therm. Spray Tech., 2019, 28, p 580–590. https://doi.org/10.1007/s11666-019-00839-3

    Article  CAS  Google Scholar 

  22. S. Harsha, D.K. Dwivedi, and A. Agrawal, Influence of WC Addition in Co-Cr-W-Ni-C Flame Sprayed Coatings on Microstructure, Microhardness and Wear Behaviour, Surf. Coat. Technol., 2006, 201, p 5766–5775. https://doi.org/10.1016/j.surfcoat.2006.10.026

    Article  CAS  Google Scholar 

  23. S.Q. Yang, Q.W. Meng, and L. Geng, Research of Laser Remelting Nickel-Coated Graphite Layer on Titanium Alloy Substrate, Appl. Laser, 2006, 26, p 227–229. https://doi.org/10.3969/j.issn.1000-372x.2006.04.004 (in Chinese)

    Article  Google Scholar 

  24. C.J. Huang, W.Y. Li, M.P. Planche, H.L. Liao, and G. Montavon, In-situ Formation of Ni-Al Intermetallics-Coated Graphite/Al Composite in a Cold-Sprayed Coating and Its High Temperature Tribological Behaviors, J. Mater. Sci. Technol., 2017, 33, p 507–515. https://doi.org/10.1016/j.jmst.2017.01.026

    Article  Google Scholar 

  25. K. Van Acker, D. Vanhoyweghen, R. Persoons, and J. Vangrunderbeek, Influence of Tungsten Carbide Particle Size and Distribution on the Wear Resistance of Laser Clad WC/Ni Coatings, Wear, 2005, 258, p 194–202. https://doi.org/10.1016/j.wear.2004.09.041

    Article  CAS  Google Scholar 

  26. S.A. Alidokht, P. Manimunda, P. Vo, S. Yue, and R.R. Chromik, Cold Spray Deposition of a Ni-WC Composite Coating and Its Dry Sliding Wear Behavior, Surf. Coat. Technol., 2016, 308, p 424–434. https://doi.org/10.1016/j.surfcoat.2016.09.089

    Article  CAS  Google Scholar 

  27. J. Ziegelheim, L. Lombardi, Z. Cesanek, S. Houdkova, J. Schubert, D. Jech, L. Celko, and Z. Pala, Abradable Coatings for Small Turboprop Engines: A Case Study of Nickel-Graphite Coating, J. Therm. Spray Technol., 2019, 28, p 794–5802. https://doi.org/10.1007/s11666-019-00838-4

    Article  CAS  Google Scholar 

  28. C.G. Xu, L.Z. Du, B. Yang, and W.G. Zhang, Study on Salt Spray Corrosion of Ni-Graphite Abradable Coating with 80Ni20Al and 96NiCr–4Al as Bonding Layers, Surf. Coat. Technol., 2011, 205, p 4154–54161. https://doi.org/10.1016/j.surfcoat.2011.03.007

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Science and Technology Research Foundation in University (QN2019013), Returned Overseas Chinese Talents Foundation (CL201726) and Natural Science Foundation (E2016203270) of Hebei Province and the Fundamental Research Foundation (020000904) and Doctoral Foundation (B942) of Yanshan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, H., Ren, L. et al. Effect of Tungsten Carbide Addition on the Wear Resistance of Flame-Sprayed Self-Lubricating Ni-Graphite Coatings. J. of Materi Eng and Perform 29, 1156–1164 (2020). https://doi.org/10.1007/s11665-020-04641-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04641-z

Keywords

Navigation