Skip to main content

Advertisement

Log in

Wear Resistance and Tribological Features of Ultra-Fine-Grained Al-Mg Alloys Processed by Constrained Groove Pressing-Cross Route

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the wear behavior of ultra-fine grained (UFG) Al-Mg alloys produced by a severe plastic deformation (SPD) method was assessed and compared against the annealed coarse-grained alloy. To this end, weight loss, wear resistance, friction coefficient, and morphology of the worn surfaces was investigated. Constrained groove pressing-cross route (CGP-CR) process, an SPD technique, was implemented at ambient temperature up to two passes to impose an equivalent plastic strain of about 4.64. Formation of a UFG structure with an average sub-grain size of ~ 350 nm with an enhanced tensile strength of up to ~ 225 MPa and indentation hardness of up to ~ 95 HV were achieved upon two passes of CGP-CR process. The pin-on-disk dry wear sliding testing was conducted up to a distance of 1000 m under normal loads of 5, 7, and 9 N at a constant sliding speed of 0.5 m/s. The trends measured for the evaluation of wear properties/mechanisms are discussed based on the microstructural features and mechanical property of UFGed alloys. The results showed that by employing the CGP-CR process and through the formation of UFG structure, the wear resistance was considerably increased. This was even beyond two times (~ 100%) larger depending on the normal loading with the lowest coefficient of friction around 0.6. Observation and study of the morphology of the worn surfaces under field emission-scanning electron microscopy (FE-SEM) revealed a change in the wear mechanism from sticking followed by formation of plastic deformation bands and delamination in the coarse-grained annealed alloy into a combined abrasive-adhesive behavior in the UFG material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  Google Scholar 

  3. J.C. Benedyk, 3-Aluminum Alloys for Lightweight Automotive Structures A2-Mallick, P.K, Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing, Cambridge, 2010, p 79–113

    Book  Google Scholar 

  4. F. Khodabakhshi, A. Simchi, A.H. Kokabi, A.P. Gerlich, and M. Nosko, Effects of Stored Strain Energy on Restoration Mechanisms and Texture Components in an Aluminum-Magnesium Alloy Prepared by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 642, p 204–214. https://doi.org/10.1016/j.msea.2015.07.001

    Article  Google Scholar 

  5. F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32(6), p 3280–3286. https://doi.org/10.1016/j.matdes.2011.02.032

    Article  Google Scholar 

  6. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Constrained Groove Pressing of Low Carbon Steel: Nano-Structure and Mechanical Properties, Mater. Sci. Eng. A, 2010, 527(16-17), p 4043–4049. https://doi.org/10.1016/j.msea.2010.03.005

    Article  Google Scholar 

  7. A.K. Gupta, T.S. Maddukuri, and S.K. Singh, Constrained Groove Pressing for Sheet Metal Processing, Prog. Mater Sci., 2016, 84, p 403–462. https://doi.org/10.1016/j.pmatsci.2016.09.008

    Article  Google Scholar 

  8. S. Morattab, K. Ranjbar, and M. Reihanian, On the Mechanical Properties and Microstructure of Commercially Pure Al Fabricated by Semi-Constrained Groove Pressing, Mater. Sci. Eng. A, 2011, 528(22–23), p 6912–6918. https://doi.org/10.1016/j.msea.2011.05.074

    Article  Google Scholar 

  9. E. Rafizadeh, A. Mani, and M. Kazeminezhad, The Effects of Intermediate and Post-Annealing Phenomena on the Mechanical Properties and Microstructure of Constrained Groove Pressed Copper Sheet, Mater. Sci. Eng. A, 2009, 515(1–2), p 162–168. https://doi.org/10.1016/j.msea.2009.03.081

    Article  Google Scholar 

  10. S.S. Satheesh Kumar and T. Raghu, Tensile Behaviour and Strain Hardening Characteristics of Constrained Groove Pressed Nickel Sheets, Mater. Des., 2011, 32(8–9), p 4650–4657. https://doi.org/10.1016/j.matdes.2011.03.081

    Article  Google Scholar 

  11. O. Unal, A. Cahit Karaoglanli, R. Varol, and A. Kobayashi, Microstructure Evolution and Mechanical Behavior of Severe Shot Peened Commercially Pure Titanium, Vacuum, 2014, 110, p 202–206. https://doi.org/10.1016/j.vacuum.2014.08.004

    Article  Google Scholar 

  12. F. Khakbaz and M. Kazeminezhad, Strain Rate Sensitivity and Fracture Behavior of Severely Deformed Al-Mn Alloy Sheets, Mater. Sci. Eng. A, 2012, 532, p 26–30. https://doi.org/10.1016/j.msea.2011.10.057

    Article  Google Scholar 

  13. E. Salvati, H. Zhang, K.S. Fong, R.J.H. Paynter, X. Song, and A.M. Korsunsky, Fatigue and Fracture Behaviour of AZ31b Mg Alloy Plastically Deformed by Constrained Groove Pressing in the Presence of Overloads, Procedia Struct. Integr., 2016, 2, p 3772–3781. https://doi.org/10.1016/j.prostr.2016.06.469

    Article  Google Scholar 

  14. M. Moradpour, F. Khodabakhshi, and H. Eskandari, Dynamic Strain Aging Behavior of an Ultra-Fine Grained Al-Mg Alloy (AA5052) Processed via Classical Constrained Groove Pressing, J. Mater. Res. Technol., 2018, https://doi.org/10.1016/j.jmrt.2018.04.016

    Google Scholar 

  15. F. Khodabakhshi and M. Kazeminezhad, The Annealing Phenomena and Thermal Stability of Severely Deformed Steel Sheet, Mater. Sci. Eng. A, 2011, 528(15), p 5212–5218. https://doi.org/10.1016/j.msea.2011.03.024

    Article  Google Scholar 

  16. F. Khodabakhshi and M. Kazeminezhad, Differential Scanning Calorimetry Study of Constrained Groove Pressed Low Carbon Steel: Recovery, Recrystallisation and Ferrite to Austenite Phase Transformation, Mater. Sci. Technol., 2014, 30(7), p 765–773. https://doi.org/10.1179/1743284713Y.0000000388

    Article  Google Scholar 

  17. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Mechanical Properties and Microstructure of Resistance Spot Welded Severely Deformed Low Carbon Steel, Mater. Sci. Eng. A, 2011, 529, p 237–245. https://doi.org/10.1016/j.msea.2011.09.023

    Article  Google Scholar 

  18. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Resistance Spot Welding of Ultra-Fine Grained Steel Sheets Produced By Constrained Groove Pressing: Optimization and Characterization, Mater. Charact., 2012, 69, p 71–83. https://doi.org/10.1016/j.matchar.2012.04.011

    Article  Google Scholar 

  19. F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S.R. Mohebpour, Application of CGP-Cross Route Process for Microstructure Refinement and Mechanical Properties Improvement in Steel Sheets, J. Manuf. Process., 2013, 15(4), p 533–541. https://doi.org/10.1016/j.jmapro.2013.08.001

    Article  Google Scholar 

  20. F. Khodabakhshi, M. Abbaszadeh, S.R. Mohebpour, and H. Eskandari, 3D Finite Element Analysis and Experimental Validation of Constrained Groove Pressing–Cross Route as an SPD Process for Sheet Form Metals, Int. J. Adv. Manuf. Technol., 2014, 73(9), p 1291–1305. https://doi.org/10.1007/s00170-014-5919-z

    Article  Google Scholar 

  21. M. Moradpour, F. Khodabakhshi, and H. Eskandari, Microstructure–Mechanical Property Relationship in an Al–Mg Alloy Processed by Constrained Groove Pressing-Cross Route, Mater. Sci. Technol., 2018, 34(8), p 1003–1017. https://doi.org/10.1080/02670836.2017.1416906

    Article  Google Scholar 

  22. N. Gao, C.T. Wang, R.J.K. Wood, and T.G. Langdon, Tribological Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation, J. Mater. Sci., 2012, 47(12), p 4779–4797. https://doi.org/10.1007/s10853-011-6231-z

    Article  Google Scholar 

  23. M.I.A.E. Aal and H.S. Kim, Wear Properties of High Pressure Torsion Processed Ultrafine Grained Al–7%Si Alloy, Mater. Des., 2014, 53, p 373–382. https://doi.org/10.1016/j.matdes.2013.07.045

    Article  Google Scholar 

  24. G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar, and S.V. Dobatkin, Influence of High Pressure Torsion-Induced Grain Refinement and Subsequent Aging on Tribological Properties of Cu-Cr-Zr alloy, J. Alloys Compd., 2018, 742, p 325–333. https://doi.org/10.1016/j.jallcom.2018.01.303

    Article  Google Scholar 

  25. İ. Çelik, A. Alsaran, and G. Purcek, Effect of Different Surface Oxidation Treatments on Structural, Mechanical and Tribological Properties of Ultrafine-Grained Titanium, Surf. Coat. Technol., 2014, 258, p 842–848. https://doi.org/10.1016/j.surfcoat.2014.07.073

    Article  Google Scholar 

  26. G. Purcek, H. Yanar, O. Saray, I. Karaman, and H.J. Maier, Effect of Precipitation on Mechanical and Wear Properties of Ultrafine-Grained Cu-Cr-Zr Alloy, Wear, 2014, 311(1), p 149–158. https://doi.org/10.1016/j.wear.2014.01.007

    Article  Google Scholar 

  27. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier, Mechanical and Wear Properties of Ultrafine-Grained Pure Ti Produced By Multi-Pass Equal-Channel Angular Extrusion, Mater. Sci. Eng. A, 2009, 517(1), p 97–104. https://doi.org/10.1016/j.msea.2009.03.054

    Article  Google Scholar 

  28. G. Purcek, I. Karaman, G.G. Yapici, M. Al-Maharbi, T. Kuçukomeroglu, and O. Saray, Enhancement in Mechanical Behavior and Wear Resistance of Severe Plastically Deformed Two-Phase Zn–Al alloys, Int. J. Mater. Res., 2007, 98(4), p 332–338. https://doi.org/10.3139/146.101470

    Article  Google Scholar 

  29. C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon, Processing of an Ultrafine-Grained Titanium By High-Pressure Torsion: An Evaluation of the Wear Properties with and Without a TiN Coating, J. Mech. Behav. Biomed. Mater., 2013, 17, p 166–175. https://doi.org/10.1016/j.jmbbm.2012.08.018

    Article  Google Scholar 

  30. A.P. Zhilyaev, I. Shakhova, A. Belyakov, R. Kaibyshev, and T.G. Langdon, Wear Resistance and Electroconductivity in Copper Processed by Severe Plastic Deformation, Wear, 2013, 305(1–2), p 89–99. https://doi.org/10.1016/j.wear.2013.06.001

    Article  Google Scholar 

  31. C. Gode, H. Yilmazer, I. Ozdemir, and Y. Todaka, Microstructural Refinement and Wear Property of Al–Si–Cu Composite Subjected to Extrusion and High-Pressure Torsion, Mater. Sci. Eng. A, 2014, 618, p 377–384. https://doi.org/10.1016/j.msea.2014.09.011

    Article  Google Scholar 

  32. E. Avcu, The Influences of ECAP on the Dry Sliding Wear Behaviour of AA7075 Aluminium Alloy, Tribol. Int., 2017, 110, p 173–184. https://doi.org/10.1016/j.triboint.2017.02.023

    Article  Google Scholar 

  33. M. Chegini, A. Fallahi, and M.H. Shaeri, Effect of Equal Channel Angular Pressing (ECAP) on Wear Behavior of Al-7075 Alloy, Procedia Mater. Sci., 2015, 11, p 95–100. https://doi.org/10.1016/j.mspro.2015.11.116

    Article  Google Scholar 

  34. E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, A. Ashrafi, and A. Ahmadi, Reciprocating Wear Resistance of Al–SiC Nano-Composite Fabricated by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 497–502. https://doi.org/10.1016/j.matdes.2013.03.047

    Article  Google Scholar 

  35. R. Jamaati, M. Naseri, and M.R. Toroghinejad, Wear Behavior of Nanostructured Al/Al2O3 Composite Fabricated via Accumulative Roll Bonding (ARB) Process, Mater. Des., 2014, 59, p 540–549. https://doi.org/10.1016/j.matdes.2014.03.027

    Article  Google Scholar 

  36. M. Ebrahimi, S. Attarilar, F. Djavanroodi, C. Gode, and H.S. Kim, Wear Properties of Brass Samples Subjected to Constrained Groove Pressing Process, Mater. Des., 2014, 63, p 531–537. https://doi.org/10.1016/j.matdes.2014.06.043

    Article  Google Scholar 

  37. F. Khodabakhshi, A. Simchi, A.H. Kokabi, M. Sadeghahmadi, and A.P. Gerlich, Reactive Friction Stir Processing of AA 5052–TiO2 Nanocomposite: Process–Microstructure–Mechanical Characteristics, Mater. Sci. Technol., 2015, 31(4), p 426–435. https://doi.org/10.1179/1743284714Y.0000000573

    Article  Google Scholar 

  38. ASTM standard E8M, Tension Testing of Metallic Materials. Annual Book of ASTM Standards, ASTM, West Conshohocken, 1998

    Google Scholar 

  39. ASTM standard G99–04, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2004

    Google Scholar 

  40. F. Khodabakhshi, A. Simchi, and A. Kokabi, Surface Modifications of an Aluminum-Magnesium Alloy Through Reactive Stir Friction Processing with Titanium Oxide Nanoparticles for Enhanced Sliding Wear Resistance, Surf. Coat. Technol., 2017, 309, p 114–123

    Article  Google Scholar 

  41. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, On the Failure Behavior of Highly Cold Worked Low Carbon Steel Resistance Spot Welds, Metall. Mater. Trans. A, 2014, 45(3), p 1376–1389. https://doi.org/10.1007/s11661-013-2074-3

    Article  Google Scholar 

  42. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi, Metallurgical Characteristics and Failure Mode Transition for Dissimilar Resistance Spot Welds Between Ultra-Fine Grained and Coarse-Grained Low Carbon Steel Sheets, Mater. Sci. Eng. A, 2015, 637, p 12–22. https://doi.org/10.1016/j.msea.2015.04.019

    Article  Google Scholar 

  43. M.I. Abd El Aal, N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, E.Y. Yoon, and H.S. Kim, Wear Properties of ECAP-Processed Ultrafine Grained Al-Cu Alloys, Mater. Sci. Eng. A, 2010, 527(16–17), p 3726–3732. https://doi.org/10.1016/j.msea.2010.03.057

    Article  Google Scholar 

  44. H.S. Arora, H. Singh, and B.K. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear, 2013, 303(1–2), p 65–77. https://doi.org/10.1016/j.wear.2013.02.023

    Article  Google Scholar 

  45. J. Li, J. Wongsa-Ngam, J. Xu, D. Shan, B. Guo, and T.G. Langdon, Wear Resistance of an Ultrafine-Grained Cu-Zr Alloy Processed by Equal-Channel Angular Pressing, Wear, 2015, 326–327, p 10–19. https://doi.org/10.1016/j.wear.2014.12.022

    Article  Google Scholar 

  46. N. Hansen, Hall–Petch Relation And Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  Google Scholar 

  47. M. Elmadagli, T. Perry, and A.T. Alpas, A Parametric Study of the Relationship Between Microstructure and Wear Resistance of Al-Si Alloys, Wear, 2007, 262(1), p 79–92. https://doi.org/10.1016/j.wear.2006.03.043

    Article  Google Scholar 

  48. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A.Z. Hanzaki, Wear Assessment of Al/Al2O3 Nano-Composite Surface Layer Produced Using Friction Stir Processing, Wear, 2011, 270(5–6), p 403–412. https://doi.org/10.1016/j.wear.2010.12.002

    Article  Google Scholar 

  49. F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, and H. Hahn, Sliding Wear-Induced Chemical Nanolayering in Cu-Ag, and Its Implications for High Wear Resistance, Acta Mater., 2014, 72, p 148–158. https://doi.org/10.1016/j.actamat.2014.03.060

    Article  Google Scholar 

  50. G. Purcek, O. Saray, F. Rubitschek, T. Niendorf, H.J. Maier, and I. Karaman, Effect Of Internal Oxidation on Wear Behavior of Ultrafine-Grained Nb-Zr, Acta Mater., 2011, 59(20), p 7683–7694. https://doi.org/10.1016/j.actamat.2011.08.028

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Khodabakhshi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, J., Khodabakhshi, F., Eskandari, H. et al. Wear Resistance and Tribological Features of Ultra-Fine-Grained Al-Mg Alloys Processed by Constrained Groove Pressing-Cross Route. J. of Materi Eng and Perform 28, 1235–1252 (2019). https://doi.org/10.1007/s11665-019-3859-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3859-3

Keywords

Navigation