Skip to main content

Advertisement

Log in

Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A Ti-22Al-25Nb alloy was fabricated from prealloyed powders by hot isostatic pressing for 2 h at a temperature of 1050 °C and pressure of 100 MPa. The hot deformation behavior of the Ti-22Al-25Nb alloy was characterized by isothermal compression testing at deformation temperatures between 900 and 1060 °C and strain rates between 0.001 and 1 s−1. Based on the true stress–strain curves, a constitutive equation was constructed to describe the flow stress as a function of the strain rate and deformation temperature. Three-dimensional (3D) processing maps were developed based on dynamic material model theory using the stress flow data to identify the instability and optimization regions of the hot processing parameters. The results show that the flow stress decreases with increasing deformation temperature and decreasing strain rate, and the softening mechanisms are different under different deformation conditions. The apparent activation energies in the (α2 + β/B2 + O) and (α2 + B2) phase regions are calculated to be 865.177 and 590.661 kJ/mol, respectively, which suggests that the hot isostatic pressed (HIPed) Ti-22Al-25Nb alloy requires a high hot deformation activation energy. Combined with microstructural observations, the optimal processing domains are determined to be a temperature range of 1030-1060 °C and strain rate range of 0.01-0.1 s−1 in the α2 + B2 phase region. Moreover, the results indicate that adiabatic shear bands and severe inhomogeneous deformation cause flow instability at lower temperatures (900-1005 °C) and higher strain rates (> 0.1 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Muraleedharan, T.K. Nandy, D. Banerjee, and S. Lele, Phase Stability and Ordering Behaviour of the O Phase in Ti-Al-Nb Alloys, Intermetallics, 1995, 3(3), p 187–199

    CAS  Google Scholar 

  2. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle, Part I. The Microstructural Evolution in Ti-Al-Nb O + Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30(9), p 2305–2323

    Google Scholar 

  3. D. Banerjee, A.K. Gogia, T.K. Nandy, and V.A. Joshi, A New Ordered Orthorhombic Phase in a Ti3Al-Nb Alloy, Acta Metall., 1988, 36(4), p 871–882

    CAS  Google Scholar 

  4. F.C. Dary and T.M. Pollock, Effects of High Temperature Air and Vacuum Exposures on the Room Temperature Tensile Behavior of the (O + B2) Titanium Aluminide Ti-22Al-23Nb, Mater. Sci. Eng. A, 1996, 208(2), p 188–202

    Google Scholar 

  5. M. Hagiwara, S. Emura, A. Araoka, B.O. Kong, and F. Tang, Enhanced Mechanical Properties of Orthorhombic Ti2AlNb-Based Intermetallic Alloy, Met. Mater. Int., 2003, 9(3), p 265–272

    CAS  Google Scholar 

  6. C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at.%) Orthorhombic + B2 Alloy, Intermetallics, 2006, 14(4), p 412–422

    CAS  Google Scholar 

  7. J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun, Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, 299(1–2), p 75–80

    Google Scholar 

  8. M. Hagiwara, S. Emura, A. Araoka, S.J. Yang, and S.W. Nam, The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Trans. A, 2004, 35(7), p 2161–2170

    Google Scholar 

  9. L. Germann, D. Banerjee, J.Y. Guedou, and J.L. Strudel, Effect of Composition on the Mechanical Properties of Newly Developed Ti2AlNb-Based Titanium Aluminide, Intermetallics, 2005, 13(9), p 920–924

    CAS  Google Scholar 

  10. C. Xue, W.D. Zeng, W. Wang, X.B. Liang, and J.W. Zhang, Coarsening Behavior of Lamellar Orthorhombic Phase and Its Effect on Tensile Properties for the Ti-22Al-25Nb Alloy, Mater. Sci. Eng. A, 2014, 611, p 320–325

    Google Scholar 

  11. S.V. Kamat, A.K. Gogia, and D. Banerjee, Effect of Alloying Elements and Heat Treatment on the Fracture Toughness of Ti-Al-Nb Alloys, Acta Mater., 1998, 46(1), p 239–251

    CAS  Google Scholar 

  12. P. Lin, Z.B. He, S.J. Yuan, and J. Shen, Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 556, p 617–624

    CAS  Google Scholar 

  13. C.J. Boehlert, The Effects of Forging and Rolling on Microstructure in O + BCC Ti-Al-Nb Alloys, Mater. Sci. Eng. A, 2000, 279(1–2), p 118–129

    Google Scholar 

  14. P.R. Smith, A.H. Rosenberger, M.J. Shepard, and R. Wheeler, IV, Review A P/M Approach for the Fabrication of an Orthorhombic Titanium Aluminide for MMC Applications, J. Mater. Sci., 2000, 35(13), p 3169–3179

    CAS  Google Scholar 

  15. J.B. Jia, K.F. Zhang, and S.S. Jiang, Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Vacuum Hot Pressing Sintering, Mater. Sci. Eng. A, 2014, 616, p 93–98

    CAS  Google Scholar 

  16. Y.X. Wang, K.F. Zhang, and B.Y. Li, Microstructure and High Temperature Tensile Properties of Ti-22Al-25Nb Alloy Prepared by Reactive Sintering with Element Powders, Mater. Sci. Eng. A, 2014, 608, p 229–233

    CAS  Google Scholar 

  17. K.H. Sim, G.F. Wang, J.M. Ju, J.L. Yang, and X. Li, Microstructure and Mechanical Properties of a Ti-22Al-25Nb Alloy Fabricated from Elemental Powders by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd., 2017, 704, p 425–433

    CAS  Google Scholar 

  18. J. Wu, L. Xu, Z.G. Lu, B. Lu, Y.Y. Cui, and R. Yang, Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys, J. Mater. Sci. Technol., 2015, 31(12), p 1251–1257

    CAS  Google Scholar 

  19. C. Chao, S. Bo, P. Xue, Q. Wei, J.M. Wu, L. Wei, and Y. Shi, Effect of Hot Isostatic Pressing Procedure on Performance of Ti6Al4V: Surface Qualities, Microstructure and Mechanical Properties, J. Alloys Compd., 2016, 686, p 55–63

    Google Scholar 

  20. X. Ma, W.D. Zeng, B. Xu, Y. Sun, C. Xue, and Y.F. Han, Characterization of the hot Deformation Behavior of a Ti-22Al-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7

    CAS  Google Scholar 

  21. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258

    CAS  Google Scholar 

  22. J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti-22Al-25Nb Using Processing Map, Rare Met., 2016, 35(1), p 118–126

    Google Scholar 

  23. J.B. Jia, K.F. Zhang, L.M. Liu, and F.Y. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti-22Al-25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221

    CAS  Google Scholar 

  24. S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, Effect of Initial Microstructures on Hot Deformation Behavior and Workability of Ti2AlNb-Based Alloy, Metals, 2018, 8(6), p 382

    Google Scholar 

  25. A. Mohamadizadeh, A. Zarei-Hanzaki, H. Abedi, S. Mehtonen, and D. Porter, Hot Deformation Characterization of Duplex Low-Density Steel Through 3D Processing Map Development, Mater. Charact., 2015, 107, p 293–301

    CAS  Google Scholar 

  26. J. Liu, Z. Cui, and C. Li, Analysis of Metal Workability by Integration of FEM and 3-D Processing Maps, J. Mater. Proc. Technol., 2008, 205(1–3), p 497–505

    CAS  Google Scholar 

  27. G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193

    CAS  Google Scholar 

  28. A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet, Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6(7–8), p 741–748

    CAS  Google Scholar 

  29. J. Zhang, J. Wu, Y. Luo, X. Mao, D. Guo, S. Zhao, and F. Yang, Hot Deformation Mechanisms of Ti-22Al-25Nb Orthorhombic Alloy, J. Mater. Eng. Perform., 2019, 28(2), p 973–980

    CAS  Google Scholar 

  30. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, Microstructural Evolution, Creep, Tensile Behavior of a Ti–22Al–25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng. A, 2014, 603, p 176–184

    CAS  Google Scholar 

  31. G. Chen, X.S. Chang, J.X. Zhang, J. Yu, C. Sun, Q. Chen, and Z.D. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting, Met. Mater. Int. 2019. https://doi.org/10.1007/s12540-019-00396-y

  32. Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy During Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24

    CAS  Google Scholar 

  33. J. Jia, K. Zhang, and Z. Lu, Dynamic Recrystallization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy During Hot Compression, Mater. Sci. Eng. A, 2014, 607, p 630–639

    CAS  Google Scholar 

  34. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759

    CAS  Google Scholar 

  35. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of a New Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952

    CAS  Google Scholar 

  36. A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui, Hot Working of Ti-6Al-3Mo-2Zr-0.3Si Alloy with Lamellar α + β Starting Structure Using Processing Map, Mater. Des., 2009, 30(5), p 1625–1631

    CAS  Google Scholar 

  37. I. Philippart and H.J. Rack, High Temperature Dynamic Yielding in Metastable Ti-6.8Mo-4.5F-1.5Al, Mater. Sci. Eng. A, 1998, 243(1–2), p 196–200

    Google Scholar 

  38. W.D. Zeng, Y. Shu, X.M. Zhang, Y.G. Zhou, Y.Q. Zhao, H. Wu, Y. Dai, J. Yang, and L. Zhou, Hot Workability and Microstructure Evolution of Highly β Stabilised Ti-25V-15Cr-0.3Si alloy, Mater. Sci. Technol., 2008, 24(10), p 1222–1229

    CAS  Google Scholar 

  39. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Mater., 1966, 14(9), p 1136–1138

    CAS  Google Scholar 

  40. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Google Scholar 

  41. G.Z. Quan, L. Zhao, T. Chen, Y. Wang, Y.P. Mao, W.Q. Lv, and J. Zhou, Identification for the Optimal Working Parameters of As-Extruded 42CrMo High-Strength Steel from a Large Range of Strain, Strain Rate and Temperature, Mater. Sci. Eng. A, 2012, 538, p 364–373

    CAS  Google Scholar 

  42. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 82–88

    Google Scholar 

  43. C.M. Sellars and W.J. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 1966, 63(9), p 731–745

    CAS  Google Scholar 

  44. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325(1–2), p 112–125

    Google Scholar 

  45. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang, Hot Deformation and Processing Map of a Typical Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2013, 550, p 438–445

    CAS  Google Scholar 

  46. C. Zhang and K. Zhang, Superplasticity of a γ-TiAl Alloy and Its Microstructure and Cavity Evolution in Deformation, J. Alloys Compd., 2010, 492, p 236–240

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation for the financial support of National Natural Science Foundation of China under Grant Nos. 51875121 and 51905122, Plan of Key Research and Development in Shandong Province under Grant Nos. 2017GGX202006 and 2019GGX102046, Natural Science Foundation in Shandong Province under Grant No. ZR2019MEE039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, M., Xu, Y. et al. Constitutive Behavior and Hot Workability of a Hot Isostatic Pressed Ti-22Al-25Nb Alloy during Hot Compression. J. of Materi Eng and Perform 28, 6816–6826 (2019). https://doi.org/10.1007/s11665-019-04453-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04453-w

Keywords

Navigation