Characterization of Subsurface Microstructural Alterations Induced by Hard Turning of Inconel 718

Abstract

Conventional machining especially hard turning is commonly used in aerospace industry to produce the final shape of cylindrical parts. However, the process generates damages and microstructural alterations on the surface and at the subsurface layer, in particular the cracking of hard carbides particles. The present paper focuses on investigating the probable mechanisms responsible for carbide cracking and the formation of a softened layer at a depth between 10 and 30 µm below the machined surface. Advanced techniques, such as laser confocal microscopy and field emission gun scanning electron microscope equipped with in situ picoindenter and electron backscatter diffraction, were used to characterize and analyze the evolution of the microstructure in the affected layer and propose the possible governing mechanisms for the observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    E.O. Ezugwu, J. Bonney, and Y. Yamane, An Overview of the Machinability of Aeroengine Alloys, J. Mater. Process. Technol., 2003, 134(2), p 233–253

    CAS  Google Scholar 

  2. 2.

    C.M. Kuo et al., Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, 510–511, p 289–294

    Google Scholar 

  3. 3.

    A. Thomas et al., High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177(1–3), p 469–472

    CAS  Google Scholar 

  4. 4.

    S. Ghosh, S. Yadav, and G. Das, Study of Standard Heat Treatment on Mechanical Properties of Inconel 718 Using Ball Indentation Technique, Mater. Lett., 2008, 62(17–18), p 2619–2622

    CAS  Google Scholar 

  5. 5.

    A. Chamanfar et al., Microstructural Characteristics of Forged and Heat Treated Inconel-718 Disks, Mater. Des., 2013, 52, p 791–800

    CAS  Google Scholar 

  6. 6.

    G.A. Rao et al., Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718, Mater. Sci. Eng. A, 2003, 355(1–2), p 114–125

    Google Scholar 

  7. 7.

    R.M. Arunachalam, M.A. Mannan, and A.C. Spowage, Surface Integrity When Machining Age Hardened Inconel 718 with Coated Carbide Cutting Tools, Int. J. Mach. Tools Manuf, 2004, 44(14), p 1481–1491

    Google Scholar 

  8. 8.

    M. Rahman, W.K.H. Seah, and T.T. Teo, The Machinability of Inconel 718, J. Mater. Process. Technol., 1997, 63(1), p 199–204

    Google Scholar 

  9. 9.

    J.M. Zhou, V. Bushlya, and J.E. Stahl, An Investigation of Surface Damage in the High Speed Turning of Inconel 718 with Use of Whisker Reinforced Ceramic Tools, J. Mater. Process. Technol., 2012, 212(2), p 372–384

    CAS  Google Scholar 

  10. 10.

    D. Dudzinski et al., A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2004, 44(4), p 439–456

    Google Scholar 

  11. 11.

    G. Brandt, A. Gerendas, and M. Mikus, Wear Mechanisms of Ceramic Cutting Tools When Machining Ferrous and Non-ferrous Alloys, J. Eur. Ceram. Soc., 1990, 6(5), p 273–290

    CAS  Google Scholar 

  12. 12.

    E.O. Ezugwu, Z.M. Wang, and A.R. Machado, The Machinability of Nickel-Based Alloys: A Review, J. Mater. Process. Technol., 1999, 86(1), p 1–16

    Google Scholar 

  13. 13.

    Q. Huang and J.X. Ren, Surface Integrity and Its Effects on the Fatigue Life of the Nickel-Based Superalloy GH33A, Int. J. Fatigue, 1991, 13(4), p 322–326

    CAS  Google Scholar 

  14. 14.

    M. Krook, V. Recina, and B. Karlsson. Material Properties Affecting the Machinability of Inconel 718, in Proceedings of the 6th International Special Emphasis Symposium “Superalloys” (2005)

  15. 15.

    L. Chen, T.I. El-Wardany, and W.C. Harris, Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses, CIRP Ann., 2004, 53(1), p 95–98

    Google Scholar 

  16. 16.

    T. Kitagawa, A. Kubo, and K. Maekawa, Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti·6Al·6 V·2Sn, Wear, 1997, 202(2), p 142–148

    CAS  Google Scholar 

  17. 17.

    W. Li et al., Effect Tool Wear During End Milling on the Surface Integrity and Fatigue Life of Inconel 718, Procedia CIRP, 2014, 14(Supplement C), p 546–551

    Google Scholar 

  18. 18.

    J.M. Zhou et al., Effects of Tool Wear on Subsurface Deformation of Nickel-Based Superalloy, Procedia Eng., 2011, 19, p 407–413

    CAS  Google Scholar 

  19. 19.

    B. Ozcelik, H. Oktem, and H. Kurtaran, Optimum Surface Roughness in End Milling Inconel 718 by Coupling Neural Network Model and Genetic Algorithm, Int. J. Adv. Manuf. Technol., 2005, 27(3), p 234–241

    Google Scholar 

  20. 20.

    R.S. Pawade and S.S. Joshi, Multi-objective Optimization of Surface Roughness and Cutting Forces in High-Speed Turning of Inconel 718 Using Taguchi Grey Relational Analysis (TGRA), Int. J. Adv. Manuf. Technol., 2011, 56(1), p 47–62

    Google Scholar 

  21. 21.

    S.K. Tamang and M. Chandrasekaran, Integrated Optimization Methodology for Intelligent Machining of Inconel 825 and Its Shop-Floor Application, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(3), p 865–877

    Google Scholar 

  22. 22.

    P.R. Provencher and M. Balaziski, Automatic Identification of Feed Marks in Machined Surface Roughness Profiles by Correlating Random Variations, Int. J. Adv. Manuf. Technol., 2015, 82(5–8), p 1305–1315

    Google Scholar 

  23. 23.

    P.R. Provencher and M. Balazinski, Principal Component Idealizations of the Dominant Modes of Variability in the Mechanics of the Cutting Process in Metal Turning, Int. J. Adv. Manuf. Technol., 2018, 95(5), p 1665–1676

    Google Scholar 

  24. 24.

    D. Ulutan et al., Empirical Modeling of Residual Stress Profile in Machining Nickel-Based Superalloys Using the Sinusoidal Decay Function, Procedia CIRP, 2014, 13, p 365–370

    Google Scholar 

  25. 25.

    D. Ulutan, B. Erdem Alaca, and I. Lazoglu, Analytical Modelling of Residual Stresses in Machining, J. Mater. Process. Technol., 2007, 183(1), p 77–87

    CAS  Google Scholar 

  26. 26.

    J. Zhou et al., Analysis of Subsurface Microstructure and Residual Stresses in Machined Inconel 718 with PCBN and Al2O3-SiCw Tools, Procedia CIRP, 2014, 13, p 150–155

    Google Scholar 

  27. 27.

    E. Capello, Residual Stresses in Turning: Part I: Influence of Process Parameters, J. Mater. Process. Technol., 2005, 160(2), p 221–228

    CAS  Google Scholar 

  28. 28.

    A.R.C. Sharman, J.I. Hughes, and K. Ridgway, An Analysis of the Residual Stresses Generated in Inconel 718™ When Turning, J. Mater. Process. Technol., 2006, 173(3), p 359–367

    CAS  Google Scholar 

  29. 29.

    S. Ranganath, C. Guo, and S. Holt, Experimental Investigations into the Carbide Cracking Phenomenon on Inconel 718 Superalloy Material, in ASME 2009 International Manufacturing Science and Engineering Conference, vol 2, 2(MSEC2009-84085) (2009), pp. 33–39

  30. 30.

    Y. Long et al., Multi-phase FE Model for Machining Inconel 718.49460, pp. 263–269 (2010)

  31. 31.

    H. Touazine et al., Modeling of the Microstructure Alteration Induced by Hard Turning of Inconel 718, Int. J. Adv. Manuf. Technol., 2017, 93(9), p 3705–3712

    Google Scholar 

  32. 32.

    H. Touazine, M. Jahazi, and P. Bocher, Accurate Determination of Damaged Subsurface Layers in Machined Inconel 718, Int. J. Adv. Manuf. Technol., 2017, 88(9), p 3419–3427

    Google Scholar 

  33. 33.

    D. Texier et al., Crack Initiation Sensitivity of Wrought Direct Aged Alloy 718 in the Very High Cycle Fatigue Regime: The Role of Non-metallic Inclusions, Mater. Sci. Eng. A, 2016, 678, p 122–136

    CAS  Google Scholar 

  34. 34.

    S. Ranganath, C. Guo, and P. Hegde, A Finite Element Modeling Approach to Predicting White Layer Formation in Nickel Superalloys, CIRP Ann., 2009, 58(1), p 77–80

    Google Scholar 

  35. 35.

    Y. Guo and S. Anurag, Particle Rotations During Plastic Deformation in Hard Turning and Grinding. (Society of Manufacturing Engineers, 2000)

  36. 36.

    J. Laigo et al., SEM, EDS, EPMA-WDS and EBSD Characterization of Carbides in HP Type Heat Resistant Alloys, Mater. Charact., 2008, 59(11), p 1580–1586

    CAS  Google Scholar 

  37. 37.

    S. Birosca, The Deformation Behaviour of Hard and Soft Grains in RR1000 Nickel-Based Superalloy, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2015)

  38. 38.

    W.Z. Abuzaid et al., Slip Transfer and Plastic Strain Accumulation Across Grain Boundaries in Hastelloy X, J. Mech. Phys. Solids, 2012, 60(6), p 1201–1220

    CAS  Google Scholar 

  39. 39.

    Z.J. Zhang et al., Fatigue Cracking at Twin Boundaries: Effects of Crystallographic Orientation and Stacking Fault Energy, Acta Mater., 2012, 60(6), p 3113–3127

    CAS  Google Scholar 

  40. 40.

    R. Jiang, N. Gao, and P.A.S. Reed, Influence of Orientation-Dependent Grain Boundary Oxidation on Fatigue Cracking Behaviour in an Advanced Ni-Based Superalloy, J. Mater. Sci., 2015, 50(12), p 4379–4386

    CAS  Google Scholar 

  41. 41.

    H. Agrawal et al., Rotations of Brittle Particles during Plastic Deformation of Ductile Alloys, Mater. Sci. Eng. A, 2002, 328(1), p 310–316

    Google Scholar 

  42. 42.

    S.G. Lee, Particle Cracking and Rotation during Plastic Deformation of 7075 Aluminum Alloy, Met. Mater. Int., 2009, 15(4), p 591–596

    CAS  Google Scholar 

  43. 43.

    C. Revilla, B. López, and J.M. Rodriguez-Ibabe, Carbide Size Refinement by Controlling the Heating Rate during Induction Tempering in a Low Alloy steel, Mater. Des. (1980–2015), 2014, 62, p 296–304

    CAS  Google Scholar 

  44. 44.

    P.P. Bhattacharjee et al., Evolution of Microstructure and Texture During Warm Rolling of a Duplex Steel, Metall. Mater. Trans. A, 2014, 45(4), p 2180–2191

    CAS  Google Scholar 

  45. 45.

    A.J. Wilkinson and T.B. Britton, Strains, Planes, and EBSD in Materials Science, Mater. Today, 2012, 15(9), p 366–376

    CAS  Google Scholar 

  46. 46.

    W. Zhang et al., Quantitative Studies of Machining-Induced Microstructure Alteration and Plastic Deformation in AISI, 316 Stainless Steel Using EBSD, J. Mater. Eng. Perform., 2018, 27(2), p 434–446

    CAS  Google Scholar 

  47. 47.

    A. Grabulov, R. Petrov, and H.W. Zandbergen, EBSD Investigation of the Crack Initiation and TEM/FIB Analyses of the Microstructural Changes Around the Cracks Formed under Rolling Contact Fatigue (RCF), Int. J. Fatigue, 2010, 32(3), p 576–583

    CAS  Google Scholar 

  48. 48.

    S.F.D. Silva Junior et al., The Use of Magnetic Barkhausen Noise Analysis for Nondestructive Determination of Stresses in Structural Elements. in Proceedings of the INAC 2007 International Nuclear Atlantic Conference Nuclear Energy and Energetic Challenges for 21st Century 15 Brazilian National Meeting on Reactor Physics and Thermal Hydraulics; 8 Brazilian National Meeting on Nuclear Applications (Brazil, 2007)

  49. 49.

    A.R.C. Sharman, J.I. Hughes, and K. Ridgway, Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718™ Nickel Based Superalloy, Mach. Sci. Technol., 2004, 8(3), p 399–414

    Google Scholar 

  50. 50.

    A. Thakur, A. Mohanty, and S. Gangopadhyay, Comparative Study of Surface Integrity Aspects of Incoloy 825 during Machining with Uncoated and CVD Multilayer Coated Inserts, Appl. Surf. Sci., 2014, 320(Supplement C), p 829–837

    CAS  Google Scholar 

  51. 51.

    A. Narayan Singh et al., Effect of Thermal Aging on Microstructure, Hardness, Tensile and Impact Properties of Alloy 617, Mater. Sci. Eng. A, 2018, 710(Supplement C), p 47–56

    CAS  Google Scholar 

  52. 52.

    P. Maj et al., The Precipitation Processes and Mechanical Properties of Aged Inconel 718 Alloy After Annealing, Arch. Metall. Mater., 2017, 62, p 1695–1702

    CAS  Google Scholar 

  53. 53.

    A. Thomas et al., High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177(1), p 469–472

    CAS  Google Scholar 

Download references

Acknowledgments

The above work was carried out under the CRIAQ project MANU 510. The authors would like to acknowledge the National Science and Engineering Research Council NSERC, Mitacs, Pratt & Whitney Canada and Heroux-Devtek for their support. The first author also appreciates the efforts of Dr. Morteza Sadeghifar for performing XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heithem Touazine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Touazine, H., Chadha, K., Jahazi, M. et al. Characterization of Subsurface Microstructural Alterations Induced by Hard Turning of Inconel 718. J. of Materi Eng and Perform 28, 7016–7024 (2019). https://doi.org/10.1007/s11665-019-04416-1

Download citation

Keywords

  • cracked carbides
  • EBSD
  • hard turning
  • in situ SEM picoindenter
  • KAM
  • nanohardness
  • soft layer
  • subsurface damage