Skip to main content
Log in

Effect of Solution Treatment on the Microstructure, Micromechanical Properties, and Kinetic Parameters of the β → α Phase Transformation during Continuous Cooling of Ti-6Al-4V Titanium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the effect of solution treatment temperature (STT) on the microstructure, the micromechanical properties, and the kinetic parameters of the β → α phase transformation during continuous cooling of the dual phase titanium alloy Ti-6Al-4V. Increasing the STT from 1050 to 1200 °C delays the formation of the α phase during cooling and increases the value of its activation energy. The microstructural analysis reveals the emergence of αW platelets from protuberances on the αGB/αW interface. The investigation of the morphology of the αW platelets reveals the presence of ledges on their longest side showing a sharp extremity. The micromechanical properties determined by nanoindentation and microhardness tests are almost insensitive to the cooling rate but are strongly affected by the STT; the higher the STT, the lower the overall microhardness of the Ti-6Al-4V alloy. In addition, the STT affects the microhardness and the Young’s modulus of both α and β phases differently; when the STT increases, the microhardness and the Young’s modulus of the α phase decrease, whereas those of the β phase increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.J. Donachie, Titanium: a Technical Guide, 2nd ed., ASM International, Cleveland, 2000

    Google Scholar 

  2. L.D. Zardiackas, M.J. Kraay, and H.L. Freese, Ed., Titanium, Niobium and Tantalum for Medical and Surgical Applications, ASTM International, West Conshohocken, 2006

    Google Scholar 

  3. S. Banerjee and P. Mukhopadhyay, Phase Transformations Examples from Titanium and Zirconium Alloys, 1st ed., Elsevier, Oxford, 2007

    Google Scholar 

  4. G. Lutjering and J.C. Williams, Titanium, 2nd ed., Springer, Berlin, 2007

    Google Scholar 

  5. C. Leyens and M. Peters, Ed., Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Hoboken, 2003

    Google Scholar 

  6. C. Cui, B.M. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32(3), p 1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  7. T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng., A, 1998, 243(1–2), p 206–211. https://doi.org/10.1016/S0921-5093(97)00802-2

    Article  Google Scholar 

  8. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V alloy, J. Alloys Compd., 2001, 329(1–2), p 142–152. https://doi.org/10.1016/S0925-8388(01)01571-7

    Article  CAS  Google Scholar 

  9. K. Abbasi, B. Beidokhti, and S.A. Sajjadi, Microstructure and Mechanical Properties of Ti-6Al-4V Welds Using α, Near-α and α + β Filler Alloys, Mater. Sci. Eng., A, 2017, 702, p 272–278. https://doi.org/10.1016/j.msea.2017.07.027

    Article  CAS  Google Scholar 

  10. H. Shahmir and T.G. Langdon, An Evaluation of the Hexagonal Close-Packed to Face-Centered Cubic Phase Transformation in a Ti-6Al-4V Alloy During High-Pressure Torsion, Mater. Sci. Eng., A, 2017, 704, p 212–217. https://doi.org/10.1016/j.msea.2017.07.099

    Article  CAS  Google Scholar 

  11. Z.X. Zhang, S.J. Qu, A.H. Feng, and J. Shen, Achieving Grain Refinement and Enhanced Mechanical Properties in Ti–6Al–4V Alloy Produced by Multidirectional Isothermal Forging, Mater. Sci. Eng., A, 2017, 692, p 127–138. https://doi.org/10.1016/j.msea.2017.07.099

    Article  CAS  Google Scholar 

  12. K. Gu, H. Zhang, B. Zhao, J. Wang, Y. Zhou, and Z. Li, Effect of Cryogenic Treatment and Aging Treatment on the Tensile Properties and Microstructure of Ti-6Al-4V Alloy, Mater. Sci. Eng., A, 2013, 584, p 170–176. https://doi.org/10.1016/j.msea.2013.07.021

    Article  CAS  Google Scholar 

  13. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, and A. Chiba, Room-Temperature Ductility of Ti-6Al-4V Alloy with α’ Martensite Microstructure, Mater. Sci. Eng., A, 2011, 528(3), p 1512–1520. https://doi.org/10.1016/j.msea.2010.10.070

    Article  CAS  Google Scholar 

  14. C.A. Dubé, H.I. Aaronson, and R.F. Mehl, La Formation de La Ferrite Proeutectoïde Dans Les Aciers Au Carbone, Rev. Métall., 1958, 55(3), p 201–210

    Article  Google Scholar 

  15. H. Beladi, Q. Chao, and G.S. Rohrer, Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy, Acta Mater., 2014, 80, p 478–489. https://doi.org/10.1016/j.actamat.2014.06.064

    Article  CAS  Google Scholar 

  16. W.G. Burgers, On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium, Physica, 1933, 1(7–12), p 561–586

    Google Scholar 

  17. I. Katzarov, S. Malinov, and W. Sha, Finite Element Modeling of the Morphology of β to α Phase Transformation in Ti-6Al-4V Alloy, Metall. Mater. Trans. A, 2002, 33(4), p 1027–1040. https://doi.org/10.1007/s11661-002-0204-4

    Article  Google Scholar 

  18. L.C. Zhang and L.Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21(4), p 1–29. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  19. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, J. Mater. Process. Technol., 2003, 133(1–2), p 84–89. https://doi.org/10.1016/S0924-0136(02)00248-0

    Article  CAS  Google Scholar 

  20. I. Ghamarian, P. Samimi, V. Dixit, and P.C. Collins, A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach, Metall. Mater. Trans. A, 2015, 46(11), p 5021–5037. https://doi.org/10.1007/s11661-015-3072-4

    Article  CAS  Google Scholar 

  21. I. Ghamarian, B. Hayes, P. Samimi, B.A. Welk, H.L. Fraser, and P.C. Collins, Developing a Phenomenological Equation to Predict Yield Strength from Composition and Microstructure in β Processed Ti-6Al-4V, Mater. Sci. Eng., A, 2016, 660, p 172–180. https://doi.org/10.1016/j.msea.2016.02.052

    Article  CAS  Google Scholar 

  22. J. Cai, F. Li, T. Liu, and B. Chen, Investigation of Mechanical Behavior of Quenched Ti-6Al-4V Alloy by Microindentation, Mater. Charact., 2011, 62(3), p 287–293. https://doi.org/10.1016/j.matchar.2011.01.011

    Article  CAS  Google Scholar 

  23. J. Dong, F. Li, and C. Wang, Micromechanical Behavior Study of α Phase with Different Morphologies of Ti-6Al-4V Alloy by Microindentation, Mater. Sci. Eng., A, 2013, 580, p 105–113. https://doi.org/10.1016/j.msea.2013.05.032

    Article  CAS  Google Scholar 

  24. E.A. Trofimov, R.Y. Lutfullin, and R.M. Kashaev, Elastic Properties of the Titanium Alloy Ti-6Al-4V, Lett. Mater., 2015, 5(1), p 67–69

    Article  Google Scholar 

  25. A.N. Kolmogorov, On the Statistical Theory of Metal Crystallization, izv. Akad. Nauk. SSSR Ser. Mat., 1937, 3, p 355–360

    Google Scholar 

  26. M. Avrami, Kinetics of Phase Change. I: General Theory, J. Chem. Phys., 1939, 7(12), p 1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  27. M. Avrami, Kinetics of Phase Change II: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, 8(2), p 212–224

    Article  CAS  Google Scholar 

  28. W.A. Johnson and R.F. Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Am Inst Min. Metall. Pet. Eng., 1939, 135, p 416–458

    Google Scholar 

  29. J.W. Cahn, Transformation Kinetics During Continuous Cooling, Acta Metall., 2000, 4(6), p 572–575. https://doi.org/10.1016/0001-6160(56)90158-4

    Article  Google Scholar 

  30. N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, and M. Amir, Beta to Alpha Transformation Kinetics and Microstructure of Ti-6Al-4V Alloy During Continuous Cooling, Mater. Chem. Phys., 2016, 181, p 462–469. https://doi.org/10.1016/j.matchemphys.2016.06.082

    Article  CAS  Google Scholar 

  31. L.C. Zhang and H. Attar, Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review, Adv. Eng. Mater., 2016, 18(4), p 463–475. https://doi.org/10.1002/adem.201500419

    Article  CAS  Google Scholar 

  32. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  33. Z. Fan, On the Young’s Moduli of Ti-6Al-4V Alloys, Scr. Metall. Mater., 1993, 29(11), p 1427–1432. https://doi.org/10.1016/0956-716X(93)90331-L

    Article  CAS  Google Scholar 

  34. I. Sen and U. Ramamurty, Elastic Modulus of Ti-6Al-4V-XB Alloys with B up to 0.55 Wt%, Scr. Mater., 2010, 62(1), p 37–40. https://doi.org/10.1016/j.scriptamat.2009.09.022

    Article  CAS  Google Scholar 

  35. H. Fujii, Continuous Cooling Transformation Characteristics of α + β Titanium Alloys, Nippon Steel Tech. Rep., 1994, 62, p 74–79

    Google Scholar 

  36. Z. Sun, S. Guo, and H. Yang, Nucleation and Growth Mechanism of α-Lamellae of Ti Alloy TA15 Cooling from an α + β Phase Field, Acta Mater., 2013, 61(6), p 2057–2064. https://doi.org/10.1016/j.actamat.2012.12.025

    Article  CAS  Google Scholar 

  37. M. Cabibbo, S. Zherebtsov, S. Mironov, and G. Salishchev, Loss of Coherency and Interphase α/β Angular Deviation from the Burgers Orientation Relationship in a Ti–6Al–4V Alloy Compressed at 800 °C, J. Mater. Sci., 2013, 48(3), p 1100–1110

    Article  CAS  Google Scholar 

  38. X. Tan, Y. Kok, W.Q. Toh, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, and C.K. Chua, Revealing Martensitic Transformation and α/β Interface Evolution in Electron Beam Melting Three-Dimensional-Printed Ti-6Al-4V, Sci. Rep., 2016, 6, p 26039

    Article  CAS  Google Scholar 

  39. S. Zherebtsov, G. Salishchev, and S. Lee Semiatin, Loss of Coherency of the Alpha/Beta Interface Boundary in Titanium Alloys During Deformation, Philos. Mag. Lett., 2010, 90(12), p 903–914. https://doi.org/10.1080/09500839.2010.521526

    Article  CAS  Google Scholar 

  40. B. Appolaire, L. Héricher, and E. Aeby-Gautier, Modelling of Phase Transformation Kinetics in Ti Alloys—Isothermal Treatments, Acta Mater., 2005, 53(10), p 3001–3011. https://doi.org/10.1016/j.actamat.2005.03.014

    Article  CAS  Google Scholar 

  41. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009

    Google Scholar 

  42. H.I. Aaronson, W.B. Triplett, and G.M. Andes, Phase Transformations in Hypoeutectoid Ti-Cr Alloys, J. Miner. Met. Mater. Soc., 1957, 9(10), p 1227–1235

    Article  CAS  Google Scholar 

  43. S. Bein and J. Béchet, Phase Transformation Kinetics and Mechanisms in Titanium Alloys Ti-6.2.4.6, β-CEZ and Ti-10.2.3, J. Phys. IV, 1996, 6, p 99–108. https://doi.org/10.1051/jp4:1996110

    Article  CAS  Google Scholar 

  44. S. Malinov, Z. Guo, W. Sha, and A. Wilson, Differential Scanning Calorimetry Study and Computer Modeling of Beta ⇒ Alpha Phase Transformation in a Ti-6Al-4 V Alloy, Metall. Mater. Trans. A, 2001, 32(4), p 879–887. https://doi.org/10.1007/s11661-001-0345-x

    Article  Google Scholar 

  45. A.R. Massih and L.O. Jernkvist, Transformation Kinetics of Zirconium Alloys under Non-Isothermal Conditions, Model. Simul. Mater. Sci. Eng., 2009, 17, p 055002

    Article  Google Scholar 

  46. N.C. Elfer and S.M. Copley, Titanium Science and Technology, G. Lutjering, U. Zwicker, and W. Bunk, Ed., DGM, Oberursel, 1985, p 1789

    Google Scholar 

  47. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Hall–Petch Strengthening for the Microhardness of Twelve Nanometer Grain Diameter Electrodeposited Nickel, Scr. Metall., 1986, 20(1), p 93–97. https://doi.org/10.1016/0036-9748(86)90219-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Kherrouba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherrouba, N., Carron, D., Bouabdallah, M. et al. Effect of Solution Treatment on the Microstructure, Micromechanical Properties, and Kinetic Parameters of the β → α Phase Transformation during Continuous Cooling of Ti-6Al-4V Titanium Alloy. J. of Materi Eng and Perform 28, 6921–6930 (2019). https://doi.org/10.1007/s11665-019-04404-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04404-5

Keywords

Navigation