Skip to main content

Advertisement

Log in

Effect of Rolling Temperature on the Microstructure and Mechanical Properties of AZ31 Alloy Sheet Processed through Variable-Plane Rolling

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AZ31 magnesium alloy sheet was produced through variable-plane rolling (VPRing) under different temperatures, and a conventional rolled AZ31 alloy was investigated for comparison. A basal texture was formed during these two processes. The texture intensity was closely related to dynamic recrystallization and deformation mechanism. Four types of twins appeared, namely {10-12} extension twins, {10-13} and {10-11} contraction twins and {10-11}-{10-12} double twins. High rolling temperature and rolling plane alteration were beneficial for activating {10-11}-{10-12} double twins. The tensile strengths revealed a declining trend with elevated rolling temperatures. The AZ31 alloy rolled at 573 K showed advantageous combination with a high yield strength of 286 MPa and compromised elongation of 5%. The mechanical anisotropy of VPRed AZ31 sheet decreased with nearly similar yield strengths along the roll direction (RD), transverse direction and 45° away from the RD. The VPRing process improved the rollability and strength of Mg alloy and reduced its mechanical anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Chen, C. Lu, D. Lin, and X. Zeng, Microstructural Evolution and Mechanical Properties of Mg96.6Y3Zn1.5 Alloy Processed by Extrusion and ECAP, Metals Mater. Int., 2014, 20, p 285–290

    Article  CAS  Google Scholar 

  2. X. Zhen, W. Du, Z. Wang, S. Li, K. Liu, and X. Du, Remarkably Enhanced Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy on the Route of Extrusion, Rolling and Aging, Mater. Lett., 2018, 212, p 155–158

    Article  Google Scholar 

  3. A. Styczynski, Ch Hartig, J. Bohlen, and D. Letzig, Cold Rolling Textures in AZ31 Wrought Magnesium Alloy, Scr. Mater., 2004, 50, p 943–947

    Article  CAS  Google Scholar 

  4. M. Hou, H. Zhang, J. Fan, Q. Zhang, L. Wang, H. Dong, and B. Xu, Microsructure Evolution and Deformation Behavior of AZ31Mg Alloy with Different Grain Orientation During Uniaxial Compression, J. Alloys Compd., 2018, 741, p 514–526

    Article  CAS  Google Scholar 

  5. S. Biswas, D. Kim, and S. Suwas, Asymmetric and Symmetric Rolling of Magnesium: Evolution of Microstructure, Texture and Mechanical Properties, Mater. Sci. Eng. A, 2012, 550, p 19–30

    Article  CAS  Google Scholar 

  6. Y.G. Ko and K. Hamad, Structural Features and Mechanical Properties of AZ31Mg Alloy Warm-Deformed by Differential Speed Rolling, J. Alloys Compd., 2018, 569, p 111

    Google Scholar 

  7. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Enhanced Formability at Elevated Temperature of a Cross-Rolled Magnesium Alloy Sheet, Mater. Sci. Eng. A, 2006, 441, p 349–356

    Article  Google Scholar 

  8. F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, and F. Pan, Microstructure, Texture and Mechanical Properties Evolution of Pre-twinning Mg Alloys Sheets During Large Strain Hot Rolling, Mater. Sci. Eng. A, 2016, 655, p 92–99

    Article  CAS  Google Scholar 

  9. Z. Sun, Y. Wu, Y. Xin, Y. Peng, B. Feng, and Q. Liu, Varying the Strong Basal Texture in a Mg-3Al-1Zn Plate by a New Wave-Shaped Interface Rolling, Mater. Lett., 2018, 213, p 151–153

    Article  CAS  Google Scholar 

  10. S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo, and Q. Liu, Tailoring the Texture and Mechanical Anisotropy of a Mg-2Zn-2Gd Plate by Varying the Rolling Path, Mater. Sci. Eng. A, 2016, 2016(653), p 93–98

    Article  Google Scholar 

  11. R. Verma, A. Srinivasan, R. Jayaganthan, S.K. Nath, and S. Goel, Studies on Tensile Behavior and Microstructural Evolution of UFG Mg-4Zn-4Gd Alloy Processed Through Hot Rolling, Mater. Sci. Eng. A, 2017, 704, p 412–425

    Article  CAS  Google Scholar 

  12. R. Zhu, L. Liu, Y. Wu, X. Cai, and H. Shen, Microstructure and Mechanical Properties of Variable-Plane-Rolled Mg-3Al-1Zn Alloy, Mater. Deg., 2014, 59, p 160–164

    Article  CAS  Google Scholar 

  13. R. Zhu, C. Bian, and Y. Wu, Mechanical Properties and Microstructural Evolution of Variable-Plane-Rolled Mg-3Al-1Zn Alloy, J. Mater. Eng. Performance, 2017, 26, p 2937–2946

    Article  CAS  Google Scholar 

  14. X. Lu, G. Zhao, J. Zhou, C. Zhang, L. Chen, and S. Tang, Microstructure and Mechanical Properties of Mg-3.0Zn-1.0Sn-0.3Mn-0.3Ca Alloy Extruded at Different Temperatures, J. Alloys Compd., 2018, 732, p 257–269

    Article  CAS  Google Scholar 

  15. C. Zhang, C. Wang, M. Zha, H. Wang, Z. Yang, and Q. Jiang, Microstructure and Tensile Properties of Rolled Mg-4Al-2Sn-1Zn Alloy with Pre-rolling Deformation, Mater. Sci. Eng. A, 2018, 719, p 132–139

    Article  CAS  Google Scholar 

  16. J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater Sci., 1995, 39, p 1–157

    Article  Google Scholar 

  17. L.X. Zhang, W.Z. Chen, and W.C. Zhang, Microstructure and Mechanical Properties of Thin ZK61 Magnesium Alloy Sheets by Extrusion and Multi-pass Rolling with Lowered Temperature, J. Mater. Process. Technol., 2016, 237, p 65–74

    Article  CAS  Google Scholar 

  18. M. Wang, R. Xin, B. Wang, and Q. Liu, Effect of Initial Texture on Dynamic Recrystallization of AZ31Mg Alloy During Hot Rolling, Mater. Sci. Eng. A, 2011, 528, p 2941–2951

    Article  Google Scholar 

  19. S.R. Agnew, M.H. Yoo, and C.N. Tome, Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y, Acta Mater., 2001, 49, p 4277–4289

    Article  CAS  Google Scholar 

  20. G.E. Dieter and D. Bacon, Mechanical Metallurgy, Materials Science & Engineering, London, 1990

    Google Scholar 

  21. X.S. Huang, Y. Chino, M. Yuasa, H. Ueda, M. Inoue, F. Kido, and T. Matsumoto, Microstructure and Mechanical Properties of AZX912 Magnesium Alloy Extruded at Different Temperatures, Mater. Sci. Eng. A, 2017, 679, p 162–171

    Article  CAS  Google Scholar 

  22. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du, and X.Z. Liao, Fabrication of Mg-Al-Zn-Mn Alloy Sheets with Homogeneous Fine-Grained Structures Using High Strain-Rate Rolling in a Wide Temperature Range, Mater. Sci. Eng. A, 2013, 2013(559), p 765–772

    Article  Google Scholar 

  23. T. Al-Samman, X. Li, and S.G. Chowdhury, Orientation Dependent Slip and Twinning During Compression and Tension of Strongly Textured Magnesium AZ31 Alloy, Mater. Sci. Eng. A, 2010, 527, p 3450–3463

    Article  Google Scholar 

  24. M.R. Barnett, Influence of Deformation Conditions and Texture on the High Temperature Flow Stress of Magnesium AZ31, J. Light Metals, 2001, 1, p 167–177

    Article  Google Scholar 

  25. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–752

    Article  Google Scholar 

  26. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28

    CAS  Google Scholar 

  27. N. Ono, K. Nakamura, and S. Miura, Influence of Grain Boundaries on Plastic Deformation in Pure Mg and AZ31Mg Alloy Polycrystals, Mater. Sci. Forum, 2003, 419–422, p 195–200

    Article  Google Scholar 

  28. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch, The Plastic Deformation of Polycrystalline Aggregates, Philos. Mag., 1962, 7, p 45–58

    Article  CAS  Google Scholar 

  29. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuke, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065

    Article  CAS  Google Scholar 

  30. Q. Li, G.J. Huang, X.D. Huang, S.W. Pan, C.L. Tan, and Q. Liu, On the Texture Evolution of Mg-Zn-Ca Alloy with Different Hot Rolling Paths, J. Magn. Alloys, 2017, 5, p 166–172

    Article  CAS  Google Scholar 

  31. M. Lentz, M. Risse, N. Schaefer, W. Reimers, and I.J. Beyerlein, Strength and Ductility with 10-11}-{10-12 Double Twinning in a Magnesium Alloy, Nat. Commun., 2016, 7, p 11068

    Article  CAS  Google Scholar 

  32. Z.H. Chen, Wrought Magnesium alloys, Chemical Industry Press, Beijing, 2005

    Google Scholar 

  33. M.R. Barnett, Twinning and Ductility of Magnesium Alloys Part II. Contraction Twins, Mater. Sci. Eng. A, 2007, 464, p 8–16

    Article  Google Scholar 

  34. Z. Wang, M. Mamatzunun, Y. Wu, Y. Wu, C. Bian, and R. Zhu, Influence of Rolling Temperature on the Mechanical Properties and Microstructure of Variable-Plane-Rolled Mg-3Al-1Zn Alloy, J. Mater. Eng. Perform., 2019, 28, p 1772–1779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Jiangsu Province (No. BK20161582) and Scientific Research Foundation of the Nanjing Communications Institute of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhu, R. Effect of Rolling Temperature on the Microstructure and Mechanical Properties of AZ31 Alloy Sheet Processed through Variable-Plane Rolling. J. of Materi Eng and Perform 28, 6182–6191 (2019). https://doi.org/10.1007/s11665-019-04363-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04363-x

Keywords

Navigation