Skip to main content
Log in

Effects of Postweld Heat Treatment on Microstructure and Properties of Laser-Welded Ti-24Al-15Nb Alloy Joint

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure evolution and mechanical properties of laser-welded joints of Ti-24Al-15Nb alloy under different postweld heat treatment (PWHT) conditions were systematically investigated. The results show that the microstructure is very sensitive to PWHT temperatures. The weld zone consists of B2 and O phases after PWHT. With the PWHT temperatures increasing from 850 to 1000 °C, the amount of O phase decreases gradually, while the grains of O precipitates become coarser. After PWHT, there are some thin acicular O precipitates in heat-affected zone (HAZ), and the decomposition of α2-phase caused by niobium diffusion can be observed in the HAZ. The PWHT can significantly increase the microhardness of joints, resulting from O phase precipitation hardening effect. The tensile strength and elongation of joints can be remarkably improved after PWHT, which was closely related to the strengthening effect of O precipitates and slip transmission between O and B2 phases. In addition, the results indicate that the best mechanical properties can be achieved only when the number and size of O phase and B2 phase are the best match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Beranoagirre, G. Urbikain, A. Calleja, and L.N. López de Lacalle, Drilling Process in γ-TiAl Intermetallic Alloys, Materials, 2018, 11, p 2379

    Article  Google Scholar 

  2. P. Lin, Z. He, S. Yuan, J. Shen, Y. Huang, and X. Liang, Instability of the O-Phase in Ti-22Al-25Nb Alloy During Elevated-Temperature Deformation, J. Alloys Compd., 2013, 578, p 96–102

    Article  CAS  Google Scholar 

  3. S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, and R.K. Ray, Annealing Response of the Intermetallic Alloy Ti-22Al-25Nb, Intermetallics, 2010, 18, p p0–1131

    Article  Google Scholar 

  4. S.R. Dey, S. Suwas, J.J. Fundenberger, and R.K. Ray, Evolution of Crystallographic Texture and Microstructure in the Orthorhombic Phase of a Two-Phase Alloy Ti-22Al-25Nb, Intermetallics, 2009, 17, p 622–633

    Article  CAS  Google Scholar 

  5. S. Djanarthany, J.C. Viala, and J. Bouix, An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl, Mater. Chem. Phys., 2001, 72, p 301–319

    Article  CAS  Google Scholar 

  6. S.J. Yang, S.W. Nam, and M. Hagiwara, Investigation of Creep Deformation Mechanisms and Environmental Effects on Creep Resistance in a Ti2AlNb Based Intermetallic Alloy, Intermetallics, 2004, 12, p 261–274

    Article  CAS  Google Scholar 

  7. C. Wang, T. Zhao, G. Wang, J. Gao, and H. Fang, Superplastic Forming and Diffusion Bonding of Ti-22Al-24Nb Alloy, J. Mater. Process. Technol., 2015, 222, p 122–127

    Article  CAS  Google Scholar 

  8. X. Chen, F. Xie, T. Ma, W. Li, and X. Wu, Microstructure Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Alloy, J. Alloys Compd., 2015, 646, p 490–496

    Article  CAS  Google Scholar 

  9. P. He, J.C. Feng, and H. Zhou, Microstructure and Strength of Brazed Joints of Ti3Al Base Alloy with AgCuZn Filler Metal, Mater. Charact., 2005, 21, p 445–450

    CAS  Google Scholar 

  10. J.C. Feng, H.Q. Wu, J.S. He, and B. Zhang, Microstructure Evolution of Electron Beam Welded Ti3Al-Nb Joint, Mater. Charact., 2005, 54, p 99–105

    Article  CAS  Google Scholar 

  11. I. Burkhardt, V. Ventzke, S. Riekehr, N. Kashaev, and J. Enz, Laser Welding and Microstructural Characterization of Dissimilar γ-TiAl-Ti6242 Joints, Intermetallics, 2019, 104, p 74–83

    Article  CAS  Google Scholar 

  12. H. Zhang, X. Zhao, D. Xu, Y. Liu, and X. Qiu, New Insight Into High Frequency Impacting and Rolling of 2A12 Aluminum Welded Joint Involving Nanocrystallization, Appl. Surf. Sci., 2019, 488, p 115–127

    Article  CAS  Google Scholar 

  13. C. Kumar, M. Das, C.P. Paul, and K.S. Bindra, Weld Quality Assessment in Fiber Laser Weldments of Ti-6Al-4 V Alloy, J. Mater. Eng. Perform., 2019, 28, p 3048–3062

    Article  CAS  Google Scholar 

  14. A. Calleja, I. Tabernero, A. Fernández, A. Celaya, A. Lamikiz, and L.N. López de Lacalle, Improvement of Strategies and Parameters for Multi-axis Laser Cladding Operations, Opt. Lasers Eng., 2014, 56, p 113–120

    Article  Google Scholar 

  15. G. Martin, C. Albright, and T. Jones, An Evaluation of CO2 Laser Beam Welding on a Ti3Al-Nb Alloy, Weld. J., 1995, 74, p 99–105

    Google Scholar 

  16. G. Wang, A. Wu, G. Zou, Y. Zhao, Q. Chen, and J. Ren, Bending Properties and Fracture Behavior of Ti-23Al-17Nb Alloy Laser Beam Welding Joints, Tsinghua Sci. Technol., 2009, 14, p 293–299

    Article  CAS  Google Scholar 

  17. M.J. Cieslak, T.J. Headley, and W.A. Baeslack, Effect of Thermal Processing on the Microstructure of Ti-26Al-11Nb: Applications to Fusion Welding, Metall. Trans. A, 1990, 21, p 1273–1286

    Article  Google Scholar 

  18. A. Wu, G. Zou, J. Ren, H. Zhang, G. Wang, and X. Liu, Microstructures and Mechanical Properties of Ti-24Al-17Nb Laser Beam Welding Joints, Intermetallics, 2002, 10, p 647–652

    Article  CAS  Google Scholar 

  19. W. Baeslackiii, M.J. Cieslak, and T.J. Headley, Structure, Properties and Fracture of Pulsed Nd:YAG Laser Welded Ti14. 8 wt%Al21. 3 wt%Nb Titanium Aluminide, Scr. Metall., 1988, 22, p 1155–1160

    Article  Google Scholar 

  20. Y. Chen, K. Zhang, and X. Hu, Study on Laser Welding of a Ti-22Al-25Nb Alloy: Microstructural Evolution and High Temperature Brittle Behavior, J. Alloys Compd., 2016, 68, p 175–185

    Article  Google Scholar 

  21. B.B. Kong, G. Liu, D.J. Wang, K.H. Wang, and S.J. Yuan, Microstructural Investigations for Laser Welded Joints of Ti-22Al-25Nb Alloy Sheets Upon Large Deformation at Elevated Temperature, Mater. Des., 2016, 90, p 723–732

    Article  CAS  Google Scholar 

  22. L. Wang, D.Q. Sun, H.M. Li, X.Y. Gu, and C.J. Shen, Microstructures and Mechanical Properties of a Laser-Welded Joint of Ti3Al-Nb Alloy Using Pure Nb Filler Metal, Metals, 2018, 8, p 785

    Article  CAS  Google Scholar 

  23. D.M. Krahmer, R. Polvorosa, L.N. López de Lacalle, U. Alonso-Pinillos, G. Abate, and F. Riu, Alternatives for Specimen Manufacturing in Tensile Testing of Steel Plates, Exp. Tech., 2016, 40, p 1555–1565

    Article  Google Scholar 

  24. S.A. David, J.A. Horton, G.M. Goodwin, D.H. Phillips, and R.W. Reed, Weldability and Microstructure of a Titanium Aluminide, Weld. J., 1990, 69, p 133–140

    Google Scholar 

  25. X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, and X.Q. Wu, Microstructural Evolution and Mechanical Properties of Linear Friction Welded Ti2AlNb Joint During Solution and Aging Treatment, Mater. Sci. Eng. A, 2016, 668, p 125–136

    Article  CAS  Google Scholar 

  26. K. Muraleedharan, T.K. Nandy, and D. Banerjee, Transformations in a Ti-24Al-15Nb Alloy: Part II. A Composition Invariant β → O Transformation, Metall. Trans. A, 1992, 23, p 417–431

    Article  Google Scholar 

  27. K. Muraleedharan, D. Banerjee, S. Banerjee, and S. Lele, The α2-to-O Transformation in Ti-Al-Nb Alloys, Philos. Mag. A, 1995, 71, p 1011–1136

    Article  CAS  Google Scholar 

  28. Y. Wu and S.K. Hwang, The Effect of Aging on Microstructure of the O-Phase in Ti-24Al-14Nb-3V-0.5Mo Alloy, Mater. Lett., 2001, 49, p 131–136

    Article  CAS  Google Scholar 

  29. D. Banerjee, A.K. Gogia, and T.K. Nandy, Deformation Structure in a Ti-24Al-11Nb Alloy, Metall. Trans. A, 1990, 21, p 627–639

    Article  Google Scholar 

  30. W. Wang, W.D. Zeng, C. Xue, X.B. Liang, and J.W. Zhang, Designed Bimodal Size Lamellar o Microstructures in Ti2AlNb Based Alloy: Microstructural Evolution, Tensile and Creep Properties, Mater. Sci. Eng. A, 2014, 618, p 288–294

    Article  Google Scholar 

  31. A. Oscar, A. Nelson, and E. Hernández, The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints Under Cyclic Tensile Loading, Materials, 2018, 11, p 594

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China for financial support (51805205). And the work was also supported by “13th Five-Year” Science and Technology Project of Education Department of Jilin Province, China (No. JJKH20180126KJ) and Science and Technology Planning Project of Jilin Province, China (No. 20181312034ZG).They would also like to thank teacher Liu Guojun from Jilin University for his assistance in this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Sun, D., Li, H. et al. Effects of Postweld Heat Treatment on Microstructure and Properties of Laser-Welded Ti-24Al-15Nb Alloy Joint. J. of Materi Eng and Perform 28, 6827–6835 (2019). https://doi.org/10.1007/s11665-019-04351-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04351-1

Keywords

Navigation