Skip to main content

Advertisement

Log in

Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The improvement in bioactivity of titanium (Ti) surface was achieved via coating it with Na-mica and Na-mica/fluorapatite glass and glass-ceramic using the low-cost electrophoretic deposition technique. Two compositions from pure Na-mica (M) and 80 Na-mica/20 fluorapatite glasses (MF) were prepared in the system SiO2-Al2O3-MgO-MgF2-Na2O-B2O3 using melting–quenching technique. Characterization of the as-prepared glasses and their counterpart glass-ceramics was studied using differential thermal analysis (DTA), x-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform-IR (FTIR) spectroscopy techniques. The bioactivity behavior was proved by studying the XRD, FTIR and SEM after immersing both glass and glass-ceramic samples in simulated body fluid (SBF). Both M and MF glasses and glass-ceramics showed high microhardness measurements and good antibacterial behavior. In vitro biodegradation was studied by using electrochemical corrosion behavior of the prepared glass- and glass-ceramic-coated Ti in SBF. The prepared coated Ti showed good corrosion resistance in SBF at 37 °C using potentiodynamic polarization technique, and the impedance data fitting explained the structure of the coating and the adsorption of SBF ions on the Ti surface. The MFGC provides the best corrosion-resistant coating, especially after sintering it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.D. Zanotto, A Bright Future for Glass-Ceramic, Am. Ceram. Soc. Bull., 2010, 89(8), p 19

    CAS  Google Scholar 

  2. W. Höland, Biocompatible and Bioactive Glass-Ceramics, State of the Art and New Directions, J. Non-Cryst. Solids, 1997, 219, p 192–197

    Article  Google Scholar 

  3. M.S. Dahiya, V.K. Tomer, and S. Duhan, Bioactive Glass/Glass Ceramics for Dental Applications, Applications of Nanocomposite Materials in Dentistry, Elsevier, Amsterdam, 2018, p 1–26

    Google Scholar 

  4. D. Grossman, Tetrasilicic Mica Glass-Ceramic Article, US Patent No 3839055, 1974

  5. G. Beall, M. Montierth, and G. Smith, Machinable Glass-Ceramics, Microtecnic, 1972, 42, p 173

    Google Scholar 

  6. T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, Apatite- and Wollastonite-Containg Glass-Ceramics for Prosthetic Application, Bull. Inst. Chem. Res. Kyoto Univ., 1982, 60, p 260–268

    CAS  Google Scholar 

  7. R. Hill and D. Wood, Apatite Mullite Glass-Ceramics, J. Mater. Sci. Mater. Med., 1995, 6(6), p 311–318

    Article  CAS  Google Scholar 

  8. A. Clifford and R. Hill, Apatite-Mullite Glass-Ceramics, J. Non-Cryst. Solids, 1996, 196(1–3), p 346–351

    Article  CAS  Google Scholar 

  9. D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M. Ventura, and J.M.F. Ferreira, Preparation and Crystallization of Glasses in the System Tetrasilicic Mica-Uorapatite-Diopside, J. Eur. Ceram. Soc., 2004, 24, p 3521–3528

    Article  CAS  Google Scholar 

  10. P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, and C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011

    Google Scholar 

  11. T. Kokubo, Bioactive Glass-Ceramics Properties and Application, Biomaterials, 1991, 12, p 155–163

    Article  CAS  Google Scholar 

  12. T. Kasuga, M. Nogami, and M. Niinomi, Preparation of Calcium Phosphate Glass-Ceramics and Their Coating on Titanium Alloys, Key Eng. Mater., 2001, 192–195, p 223–226

    Google Scholar 

  13. R. Bowen, Adhesive Bonding of Various Materials to Hard Tooth Tissues, J. Dent. Res., 1965, 44(5), p 906–911

    Article  CAS  Google Scholar 

  14. M. Amirnejad, A. Afshar, and S. Salehi, The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD), J. Mater. Eng. Perform, 2018, 27, p 2338–2344

    Article  CAS  Google Scholar 

  15. D. Haverty, S. Tofail, K. Stanton, and J. McMonagle, Structure and Stability of Hydroxyapatite: Density Functional Calculation and Rietveld Analysis, Phys. Rev. B, 2005, 71(9), p 94–103

    Article  Google Scholar 

  16. H. Kim, B. Yoon, Y. Koh, and H. Kim, Processing and Performance of Hydroxyapatite/Fluorapatite Double Layer Coating on Zirconia by the Powder Slurry Method, J. Am. Ceram. Soc., 2006, 89(8), p 2466–2472

    Article  CAS  Google Scholar 

  17. T. Kasuga, E. Ueno, and A. Obata, Preparation of Apatite-Containing Calcium Phosphate Glass-Ceramics, Key Eng. Mater., 2007, 330–332, p 157–160

    Article  Google Scholar 

  18. S.K. Yen and C.M. Lin, Cathodic Reactions of Electrolytic Hydroxyapatite Coating on Pure Titanium, Mater. Chem. Phys., 2002, 77, p 70–76

    Article  Google Scholar 

  19. J. Gomez-Vega, E. Saiz, and A. Tomsia, Glass-Based Coatings for Titanium Implant Alloys, J. Biomed. Mater. Res., 1999, 46(4), p 549–559

    Article  CAS  Google Scholar 

  20. D.Y. Lin and X.X. Wang, Electrodeposition of Hydroxyapatite Coating on CoNiCrMo Substrate in Dilute Solution, Surf. Coat. Technol., 2010, 204, p 3205–3213

    Article  CAS  Google Scholar 

  21. X. Zhao, L. Yang, Y. Zuo, and J. Xiong, Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid, Chin. J. Chem. Eng., 2009, 17(4), p 667–671

    Article  CAS  Google Scholar 

  22. A.M. Fathi, H.K. Abd El-Hamid, and M.M. Radwan, Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate, Int. J. Electrochem. Sci., 2016, 11, p 3164–3178

    Article  CAS  Google Scholar 

  23. K. Stanton and J. Vanhumbeeck, Bioactive Apatite-Mullite Glass-Ceramic Coatings on Titanium Substrates, Adv. Sci. Technol., 2006, 45, p 1275–1280

    Article  CAS  Google Scholar 

  24. M. Pourmand and N. Taghavinia, TiO2 Nanostructured Films on Mica Using Liquid Phase Deposition, Mater. Chem. Phys., 2008, 107, p 449–455

    Article  CAS  Google Scholar 

  25. K.P. O’Flynn and K.T. Stanton, Laser Sintering and Crystallization of a Bioactive Glass-Ceramic, J. Non-Cryst. Solids, 2013, 360, p 49–56

    Article  Google Scholar 

  26. S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma, and A. Tomsia, Bioactive Glass Coatings for Orthopedic Metallic Implants, J. Eur. Ceram. Soc., 2003, 23(15), p 2921–2930

    Article  CAS  Google Scholar 

  27. J. Gomez-Vega, E. Saiz, A. Tomsia, G. Marshall, and S. Marshall, Bioactive Glass Coatings with Hydroxyapatite and Bioglass Particles on Ti-Based Implants. 1. Processing, Biomaterials, 2000, 21(2), p 105–111

    Article  CAS  Google Scholar 

  28. M. Montazerian and E.D. Zanotto, Bioactive and Inert Dental Glass-Ceramics, J. Biomed. Mater. Res. A, 2017, 105(2), p 619–639

    Article  CAS  Google Scholar 

  29. L. Hallmann, P. Ulmer, and M. Kern, Effect of Microstructure on the Mechanical Properties of Lithium Disilicate Glass-Ceramic, J. Mech. Behav. Biomed. Mater., 2018, 82, p 355–370

    Article  CAS  Google Scholar 

  30. T. Uno, T. Kasuga, and S. Nakayama, High Strength Mica-Containing Glass-Ceramics, J. Am. Ceram. Soc., 1991, 74, p 3139–3141

    Article  CAS  Google Scholar 

  31. Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota, and A. Fujishima, Self-sterilizing and Self-cleaning of Silicone Catheters Coated with TiO2 Photocatalyst Thin Films, J. Biomed. Mater. Res., 2001, 58, p 97–101

    Article  CAS  Google Scholar 

  32. M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual Coating Approach, J. Sol Gel Sci. Technol., 2001, 21, p 39–48

    Article  CAS  Google Scholar 

  33. A.W.A. El-Shennawi, M.M. Morsi, G.A. Khater, and S.A.M. Abdel-Hameed, Thermodynamic Investigation of Crystallization Behavior of Pyroxenic Basalt-Based Glasses, J. Therm. Anal., 1998, 50(2), p 206

    Google Scholar 

  34. A.W.A. El-Shennawi, M.M. Morsi, and S.A.M. Abdel-Hameed, Effect of Fluoride Nucleating Catalysts on Crystallization of Cordierite from Modified Basalt-Based Glasses, J. Eur. Ceram. Soc., 2007, 27, p 1829–1835

    Article  CAS  Google Scholar 

  35. D.B. Dingwell, C.M. Scarfe, and D.J. Cronin, The Effect of Fluorine on Viscosities in the System Na2O-Al2O3-SiO2: Implications for Phonolites, Trachytes and Rhyolites, Am. Mineral., 1985, 70, p 80–87

    CAS  Google Scholar 

  36. J.H. Simmons, D.R. Uhlmann, and E.H. Beall, Nucleation and Crystallization in Glasses, American Ceramic Society, Columbus, 1982

    Google Scholar 

  37. L. Yong, Q. Xiang, Y. Tan, and X. Sheng, Nucleation and Growth of Needle-like Fluorapatite Crystals in Bioactive Glass-Ceramics, J. Non-Cryst. Solids, 2008, 354, p 938–944

    Article  Google Scholar 

  38. S. Taruta, K. Mukoyama, S.S. Suzuki, K. Kitajima, and N. Takusagawa, Crystallization Process and Some Properties of Calcium Mica-Apatite Glass-Ceramics, J. Non-Cryst. Solids, 2001, 296, p 201

    Article  CAS  Google Scholar 

  39. X.F. Chen, L.L. Hench, D. Greenspan, J.P. Zhong, and X.K. Zhang, investigation on Phase Separation, Nucleation and Crystallization in Bioactive Glass Ceramics Containing Fluorophlogopite and Fluorapatite, Ceram. Int., 1998, 24, p 401

    Article  CAS  Google Scholar 

  40. P. Tarte, Identification of Li-O Bands in the Infrared Spectra of Simple Lithium Compounds Containing LiO4 Tetrahedra, Spectrochim. Acta, 1964, 20, p 238–240571

    Article  CAS  Google Scholar 

  41. R. Condrate, Introduction to Glass Science, Plenum Press, New York, 1972, p 101

    Book  Google Scholar 

  42. W. Höland, V. Rheinberger, and M. Frank, Mechanism of Nucleation and Controlled Crystallization of Needle like Apatite in Glass Ceramics of the SiO2-Al2O3-K2O-CaO-P2O5 Systems, J. Non-Cryst. Solids, 1999, 253, p 170

    Article  Google Scholar 

  43. D.P. Mukherjee, A.R. Molla, and S.K. Das, The Influence of MgF2 Content on the Characteristic Improvement of Machinable Glass Ceramics, J. Non-Cryst. Solids, 2016, 433, p 51–59

    Article  CAS  Google Scholar 

  44. S.G. Motke, S.P. Yawale, and S.S. Yawale, Infrared Spectra of Zinc Doped Lead Borate Glasses, Bull. Mater. Sci., 2002, 25, p 75–78

    Article  CAS  Google Scholar 

  45. F.H. ElBatal, M.A. Ouis, and H.A. ElBatal, Comparative Studies on the Bioactivity of Some Borate Glasses and Glass-Ceramics from the Two Systems: Na2, O-CaO-B2O3 and NaF-CaF2-B2O3, Ceram. Int., 2016, 42, p 8247–8256

    Article  CAS  Google Scholar 

  46. A.M. Abdelghany, F.H. ElBatal, and H.A. ElBatal, Zinc Containing Borate Glasses and Glass-Ceramics: Search for Biomedical Applications, Process. Appl. Ceram., 2014, 8(4), p 185–193

    Article  CAS  Google Scholar 

  47. M.A. Marzouk and H.A. ElBatal, In Vitro Bioactivity of Soda Lime Borate Glasses with Substituted SrO in Sodium Phosphate Solution, Process. Appl. Ceram., 2014, 8(3), p 167–177

    Article  Google Scholar 

  48. S.P. Singh, K. Pal, A. Tarafder, M. Dsa, K. Annapurna, and B. Karmakar, Effects of SiO2 and TiO2 Fillers on Thermal and Dielectric Properties of Eco-friendly Bismuth Glass Microcomposites of Plasma Display Panels, Bull. Mater. Sci., 2010, 33, p 33–41

    Article  CAS  Google Scholar 

  49. T. Furukawa and W.B. White, Raman Spectroscopy of Heat-Treated B2O3-SiO2 Glasses, J. Am. Ceram. Soc., 1981, 64, p 443–447

    Article  CAS  Google Scholar 

  50. N.A. Shafi and M.M. Morsi, Optical Absorption and Infrared Studies of Some Silicate Glasses Containing Titanium, J. Mater. Sci., 1997, 32, p 5185–5189

    Article  Google Scholar 

  51. E.M. Khalil and M. Aouf, Effect of Heat Treatment on the Infrared Absorption Spectra of Strontium-Sodium-Borosilicate Glass, Indian J. Eng. Mater. Sci., 1997, 4, p 155–162

    CAS  Google Scholar 

  52. T. Suzuki, Y. Arai, and Y. Ohishi, Crystallization Processes of Li2O-Ga2O3-SiO2-NiO System Glasses, J. Non-Cryst. Solids, 2007, 353, p 36–43

    Article  CAS  Google Scholar 

  53. I. Konidakis, C.-P.E. Varsamis, E.I. Kamitsos, D. Möncke, and D. Ehrt, Structure and Properties of Mixed Strontium-Manganese Metaphosphate Glasses, J. Phys. Chem. C, 2010, 114, p 9125–9138

    Article  CAS  Google Scholar 

  54. C. Dayanand, G. Bhikshamaiah, V. Jaya Tyagaraju, M. Salagram, and A.S.R. Krishana Murthy, Structural Investigations of Phosphate Glasses: A Detailed Infrared Study of the x(PbO)-(1 − x) P2O5 Vitreous System, J. Mater. Sci., 1996, 31, p 1945

    Article  CAS  Google Scholar 

  55. M. Rafiqul Ahsan, M. Alfaz Uddin, and M. Golam Mortuza, Infrared Study of the Effect of P2O5 in the Structure of Lead Silicate Glasses, Indian J. Pure Appl. Phys., 2005, 43, p 89–99

    Google Scholar 

  56. H.A. ElBatal, A.A. ElKheshen, N.A. Ghoneim, M.A. Marzouk, F.H. ElBatal, A.M. Fayad, A.M. Abdelghany, and A.A. El-Beih, In Vitro Bioactivity Behavior of Some Borophosphate Glasses Containing Dopant of ZnO, CuO or SrO Together with their Glass-Ceramic Derivatives and Their Antimicrobial Activity, Silicon, 2019, 11, p 197–208

    Article  CAS  Google Scholar 

  57. O.P. Filho, G.P. La Torre, and L.L. Hench, Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45S5, J. Biomed. Mater. Res., 1996, 30, p 509–514

    Article  Google Scholar 

  58. T. Uno, T. Kasuga, S. Nakayama, and A.J. Ikushima, Microstructure of Mica-Based Nanocomposite Glass-Ceramic, J. Am. Ceram. Soc., 1993, 76, p 539–541

    Article  CAS  Google Scholar 

  59. O. Xiang, Y. Liu, X. Sheng, and X. Dan, Preparation of Mica-Based Glass-Ceramics with Needle-like Fluorapatite, J. Dent. Mater., 2007, 23, p 251–258

    Article  CAS  Google Scholar 

  60. J.S. Fernandes, P. Gentile, R.A. Pires, R.L. Reis, and P.V. Hatton, Multifunctional Bioactive Glass and Glass-Ceramic Biomaterials with Antibacterial Properties for Repair and Regeneration of Bone Tissue, Acta Biomater., 2017, 59, p 2–11

    Article  CAS  Google Scholar 

  61. W.A. Badawy, K.M. Ismail, and A.M. Fathi, Corrosion Control of Cu-Ni Alloys in Neutral Chloride Solutions by Amino Acids, Electrochim. Acta, 2006, 51, p 4182–4189

    Article  CAS  Google Scholar 

  62. D.S. Brauera, N. Karpukhina, M.D. O’Donnell, R.V. Law, and R.G. Hill, Fluoride-Containing Bioactive Glasses: Effect of Glass Design and Structure on Degradation, pH and Apatite Formation in Simulated Body Fluid, Acta Biomater., 2010, 6, p 3275–3282

    Article  Google Scholar 

  63. A. Balamurugan, G. Balossier, J. Michel, and J.M.F. Ferreira, Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti6Al4V Alloy, Electrochim. Acta, 2009, 54, p 1192

    Article  CAS  Google Scholar 

  64. Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, and Wafa I. Abdel-Fattah, Aqueous Electrophoretic Deposition and Corrosion Protection of Borate Glass Coatings on 316 L Stainless Steel for Hard Tissue Fixation, Surf. Interfaces, 2017, 7, p 125–133

    Article  CAS  Google Scholar 

  65. C.Y. Yang, B.C. Wang, E. Chang, and B.C. Wu, Bond Degradation at the Plasma-Sprayed HA Coating/Ti-6AI-4V Alloy Interface: An In Vitro Study, J. Mater. Sci. Mater. Med., 1995, 6, p 258–265

    Article  CAS  Google Scholar 

  66. A.R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, Electrophoretic Deposition of Biomaterials, J. R. Soc. Interface, 2010, 7, p S581–S613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this work wish to thank the authorities of National Research Centre for financial support (Research Grant No. 11090114) to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayad, A.M., Fathi, A.M., El-Beih, A.A. et al. Correlation between Antimicrobial Activity and Bioactivity of Na-Mica and Na-Mica/Fluorapatite Glass and Glass-Ceramics and Their Corrosion Protection of Titanium in Simulated Body Fluid. J. of Materi Eng and Perform 28, 5661–5673 (2019). https://doi.org/10.1007/s11665-019-04296-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04296-5

Keywords

Navigation