Skip to main content
Log in

Effect of Different Forms of Application of a Laser Surface Treatment on Fatigue Crack Growth of an AA6013-T4 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work analyzes the effect of surface-localized laser heating treatment on the fatigue crack growth (FCG) rate on region II of the sigmoidal da/dN × ΔK curve of an aerospace-grade AA6013-T4 aluminum alloy sheet with 1.3 mm thickness. The influence on microstructure changes is also evaluated. Aiming to improve the FCG resistance without changing the mechanical behavior of the alloy, a Yb:fiber laser beam is defocused to generate a laser spot diameter of 2 mm, using 200 W power and a laser speed of 2 mm/s. Two laser lines are applied over fatigue C(T) specimens in two different forms: on only one and on both lateral specimen surfaces. Guinier–Preston zones, dispersoids and coarse constituent particles are found on the base material. On the heat-treated material, the same precipitates and also β′ and Q′ precipitates are found. These microstructural variations due to the laser thermal cycle, together with the presence of induced compressive residual stresses, improved the fatigue behavior of the material. The FCG retardation is optimized when two laser lines were applied on both lateral surfaces of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Polmear, D. StJohn, J.F. Nie, and M. Qian, Light Alloys—Metallurgy of the Light Metals, 5th ed., Elsevier, Amsterdam, 2017

    Google Scholar 

  2. J.E. Hatch, Aluminum—Properties and Physical Metallurgy, American Society for Metals, Materials Park, 1984

    Google Scholar 

  3. R.K. Nalla, I. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, and R.O. Ritchie, On the Influence of Mechanical Surface Treatments—Deep Rolling and Laser Shock Peening—On the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2003, 355, p 216–230

    Article  Google Scholar 

  4. C. Rubio-González, J.L. Ocana, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, Effect of Laser Shock Processing on FCG and Fracture Toughness of 6061-T6 Aluminum Alloy, Mater. Sci. Eng. A, 2004, 386, p 291–295

    Article  Google Scholar 

  5. O. Hatamleh, A Comprehensive Investigation on the Effects of Laser and Shot Peening on FCG in Friction Stir Welded AA2195 Joints, Int. J. Fatigue, 2009, 31, p 974–998

    Article  CAS  Google Scholar 

  6. K. Ding and Y. Lee, Laser Shock Peening—Performance and Process Simulation, Woodhead Publishing Limited, Sawston, 2006

    Book  Google Scholar 

  7. S. Huang, J.Z. Zhou, J. Sheng, K.Y. Luo, J.Z. Lu, J.C. Xu, X.K. Meng, L. Dai, L.D. Zuo, H.Y. Ruan, and H.S. Chen, Effects of Laser Peening with Different Coverage Areas on FCG Properties of 6061-T6 Aluminum Alloy, Int. J. Fatigue, 2013, 47, p 292–299

    Article  CAS  Google Scholar 

  8. Z. Bergant, U. Trdan, and J. Grum, Effects of Laser Shock Processing on High Cycle FCG Rate and Fracture Toughness of Aluminium Alloy 6082-T651, Int. J. Fatigue, 2016, 87, p 444–455

    Article  CAS  Google Scholar 

  9. V.K. Saxena, A. Bharti, G. Malakondaiah, and V.M. Radhakrishnan, Effect of Laser Surface Treatment of Fatigue on Crack Growth Resistance in an Fe-Mn-Al Austenitic Steel, Int. J. Fatigue, 1993, 15, p 369–375

    Article  CAS  Google Scholar 

  10. L.W. Tsay, Y.C. Liu, D.Y. Lin, and M.C. Young, The Use of Laser Surface-Annealed Treatment to Retard FCG of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 384, p 177–183

    Article  Google Scholar 

  11. R.K. Yee and K.S. Sidhu, Innovative Laser Heating Methodology Study for Crack Growth Retardation in Aircraft Structures, Int. J. Fatigue, 2005, 27, p 245–253

    Article  CAS  Google Scholar 

  12. D. Schnubel, Laser Heating as Approach to Retard FCG in Aircraft Aluminium Structures. PhD Thesis. Hamburg’s University. Germany. 2012, p 115

  13. D. Schnubel and N. Huber, Retardation of FCG in Aircraft Aluminium Alloys via Laser Heating—Numerical Prediction of FCG, Comput. Mater. Sci., 2012, 65, p 461–469

    Article  CAS  Google Scholar 

  14. D. Schnubel, M. Horstmann, V. Ventzke, S. Riekehr, P. Staron, T. Fischer, and N. Huber, Retardation of FCG in Aircraft Aluminium Alloys via Laser Heating—Experimental Proof of Concept, Mater. Sci. Eng. A, 2012, 546, p 8–14

    Article  CAS  Google Scholar 

  15. A. Groth, M. Horstmann, N. Kashaev, and N. Huber, Design of Local Heat Treatment for Crack Retardation in Aluminium Alloys. 1st International Conference on Structural Integrity. Procedia Eng., 2015, 114, p 271–276

    Article  CAS  Google Scholar 

  16. M.C. Cunha and M.S.F. Lima, The Influence of Laser Surface Treatment on the Fatigue Crack Growth of AA2024-T3 Aluminum Alloy Alclad Sheet, Surf. Coat. Technol, 2017, 329, p 244–249

    Article  Google Scholar 

  17. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The Precipitation Sequences in Al-Mg-Si Alloys, Acta Mater., 1998, 46, p 3893–3904

    Article  CAS  Google Scholar 

  18. Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding, Metall. Mater. Trans. A, 1999, 30A, p 2429–2437

    Article  CAS  Google Scholar 

  19. B. Heinz and B. Skrotzki, Characterization of a Friction-Stir-Welded Aluminum Alloy 6013, Metall. Mater. Trans. B, 2002, 33B, p 489–498

    Article  CAS  Google Scholar 

  20. A. Perovic, D.D. Perovic, G.C. Weatherly, and D.J. Lloyd, Precipitation in Aluminum Alloys AA6111 and AA6016, Scr. Mater., 1997, 41, p 703–708

    Article  Google Scholar 

  21. C. Cayron and P.A. Buffat, Transmission Electron Microscopy Study of the β′ Phase (Al-Mg-Si Alloys) and Q′ Phase (Al-Cu-Mg-Si Alloys): Ordering Mechanism and Crystallographic Structure, Acta Mater., 2000, 48, p 2639–2653

    Article  CAS  Google Scholar 

  22. D.J. Chakrabarti and D.E. Laughlin, Phase Relations and Precipitation in Al–Mg–Si Alloys with Cu Additions, Prog. Mater. Sci., 2004, 49, p 389–410

    Article  CAS  Google Scholar 

  23. M. Bloeck, Aluminium Sheet for Automotive Applications, In: Advanced Materials in Automotive Engineering, Woodhead Publishing, 2012

  24. R.H.M. Siqueira, A.C. Oliveira, R. Riva, A.J. Abdalla, C.A.R.P. Baptista, and M.S.F. Lima, Mechanical and Microstructural Characterization of Laser-Welded Joints of 6013-T4 Aluminum Alloy, J. Braz. Soc. Mech. Sci. Eng., 2015, 37(1), p 133–140

    Article  Google Scholar 

  25. S. Suresh, A.K. Vasudévan, and P.E. Bretz, Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment, Metall. Trans. A, 1984, 15A, p 369–379

    Article  CAS  Google Scholar 

  26. R.A. Siddiqui, H.A. Abdullah, and K.R. Al-Belushi, Influence of Aging Parameters on the Mechanical Properties of 6063 Aluminium Alloy, J. Mater. Process. Technol., 2000, 102, p 234–240

    Article  Google Scholar 

  27. G.H. Bray, M. Glazov, R.J. Rioja, D. Li, and R.P. Gangloff, Effect of Artificial Aging on the Fatigue Crack Propagation Resistance of 2000 Series Aluminum Alloys, Int. J. Fatigue, 2001, 23(1), p 265–276

    Article  Google Scholar 

  28. Standard Test Method for Microindentation Hardness of Materials 1, E384-17, ASTM, 2018, p 40

  29. E. Yanase, K.N. Vlad, M.I.R. Zolotarev, K. Nishio, Y. Kusum, K. Arai, and S. Nakagawa, Sin2Ψ Stress Measurement Method with Maintaining Probing Depth, J. Neurosci. Res., 2001, 9, p 273–279

    Google Scholar 

  30. Standard Test Method for Measurement of FCG Rates, E647 – 13, ASTM, 2014, p 49

  31. R.A. Jeniski, B. Thanaboonsombut, and T.H. Sanders, The Effect of Iron and Manganese on the Recrystallization Behavior of Hot-Rolled and Solution-Heat-Treated Aluminum Alloy 6013, Mater. Trans. A, 1996, 27, p 19–27

    Article  Google Scholar 

  32. C. Barbosa, J.M.A. Rabello, O. Acselrad, J. Dille, and J.L. Delplancke, Identification of Precipitates in 6013 Aluminum Alloy (Al-Mg-Si-Cu), Z. Metall., 2002, 93, p 208–211

    Article  CAS  Google Scholar 

  33. C. Barbosa, J. Dille, J.L. Delplancke, J.M.A. Rabello, and O. Acselrad, A Microstructural Study of Flash Welded and Aged 6061 and 6013 Aluminum Alloy, Mater. Charact., 2006, 57, p 187–192

    Article  CAS  Google Scholar 

  34. W.R. Osório, L.C. Peixoto, D.J. Moutinho, L.G. Gomes, I.L. Ferreira, and A. Garcia, Corrosion Resistance of Directionally Solidified Al-6Cu-1Si and Al-8Cu-3Si Alloys Castings, Mater. Des., 2011, 32, p 3832–3837

    Article  Google Scholar 

  35. W.R. Osório, L.R. Garcia, P.R. Goulart, and A. Garcia, Effects of Eutectic Modification and T4 Heat Treatment on Mechanical Properties and Corrosion Resistance of an Al-9 wt%Si Casting Alloy, Mater. Chem. Phys., 2007, 106, p 343–349

    Article  Google Scholar 

  36. W.R. Osório, C.M.A. Freire, and A. Garcia, Effects of the Longitudinal and Transversal Structural Grain Morphologies Upon the Corrosion Resistance of Zinc and Aluminium Specimens, Rev. Metal. Madr., 2005, 41, p 176–180

    Article  Google Scholar 

  37. K.J. Kang, J.H. Song, and Y.Y. Earmme, Fatigue Crack Growth Through a Tensile Residual Stress Field Under Compressive Applied Loading, Fatigue Fract. Engng. Mater. Struct., 1989, 12(5), p 363–376

    Article  Google Scholar 

  38. M. Beghini and L. Bertini, Fatigue Crack Propagation Through Residual Stress Fields with Closure Phenomena, Eng. Fract. Mech., 1990, 36(3), p 379–387

    Article  Google Scholar 

  39. G. Bussu and P.E. Irving, The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints, Int. J. Fatigue, 2003, 25, p 77–88

    Article  CAS  Google Scholar 

  40. L.B. Godefroid, A. Matias, E. Rodrigues, F.L. Bastian, and K.A. Rubaie, Fatigue Crack Growth Resistance and Crack Closure Behavior in Two Aluminum Alloys for Aeronautical Applications, Mater. Res., 2005, 8(3), p 287–291

    Article  Google Scholar 

  41. L.B. Godefroid, E. Barroso, and K.A. Rubaie, Fatigue Crack Growth Analysis of Pre-strained 7475-T7351 Aluminum Alloy, Int. J. Fatigue, 2006, 28(8), p 934–942

    Article  Google Scholar 

  42. K.A. Rubaie, E.K.L. Barroso, and L.B. Godefroid, Statistical Modeling of Fatigue Crack Growth Rate in Pre-strained 7475-T7351 Aluminum Alloy, Mater. Sci. Eng. A, 2008, 486, p 585–595

    Article  Google Scholar 

  43. T.L. Anderson, Fracture Mechanics—Fundamentals and Applications, 3rd ed., CRC Press, Boca Raton, 2005

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Center of Microscopy at the Universidade Federal de Minas Gerais (Brazil) for providing the equipment and technical support for experiments involving transmission electron microscopy. C.M. Gonçalves would like to acknowledge CAPES for providing her financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Godefroid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, C.M., Godefroid, L.B., Lima, M.S.F. et al. Effect of Different Forms of Application of a Laser Surface Treatment on Fatigue Crack Growth of an AA6013-T4 Aluminum Alloy. J. of Materi Eng and Perform 28, 5832–5842 (2019). https://doi.org/10.1007/s11665-019-04295-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04295-6

Keywords

Navigation