Skip to main content
Log in

Molecular Dynamics Simulation Study of Uniaxial Ratcheting Behaviors for Ultrafine-Grained Nanocrystalline Nickel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, molecular dynamics (MD) simulation-based study of deformation behavior of ultrafine-grained nanocrystalline nickel under asymmetric cyclic loading having stress ratios (R) such as − 0.2, − 0.4 and − 0.6 for different temperatures, viz. 100, 300 and 500 K, has been performed using embedded atom method potential. The predicted ratcheting strain by MD simulation for nanocrystalline Ni varies from 15 to 30%. A significant increase in ratcheting strain has been observed with the increase in temperature. It has been observed that the number of vacancies increases, and the number of clusters decreases with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed cluster analysis. Zigzag pattern of dislocation density has been observed and leads to the decrease in dislocation density with the increase in temperature. Stress ratio does not show any significant effect on the number of vacancies, clusters and dislocation density on structural evolution during the asymmetric cyclic loading. Slight change in the grain rotation has been observed with the increase in temperature, and there is almost no change in the final texture evolved. From the post-tensile tests, ultimate tensile strength that remains same may be due to constant average dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.S. Murty, P. Shankar, B. Raj, B.B. Rath, and J. Murday, Textbook of Nanoscience and Nanotechnology, Springer, Berlin, 2013

    Book  Google Scholar 

  2. R. Kelsall, I.W. Hamley, and M. Geoghegan, Ed., Nanoscale Science and Technology, Wiley, Hoboken, 2005

    Google Scholar 

  3. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29

    Article  CAS  Google Scholar 

  4. S. Pal, M. Meraj, and C. Deng, Effect of Zr Addition on Creep Properties of Ultra-fine Grained Nanocrystalline Ni Studied by Molecular Dynamics Simulations, Comput. Mater. Sci., 2017, 126, p 382–392

    Article  CAS  Google Scholar 

  5. H.S. Kim and Y. Estrin, Strength and Strain Hardening of Nanocrystalline Materials, Mater. Sci. Eng. A, 2008, 483, p 127–130

    Article  CAS  Google Scholar 

  6. B.T.F. Tang, U. Erb, and I. Brooks, Strain Hardening in Polycrystalline and Nanocrystalline Nickel, Adv. Mater. Res., 2012, 409, p 550–554

    Article  CAS  Google Scholar 

  7. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Deformation of Electrodeposited Nanocrystalline Nickel, Acta Mater., 2013, 51(2), p 387–405

    Article  CAS  Google Scholar 

  8. T.J. Rupert, D.S. Gianola, Y. Gan, and K.J. Hemker, Experimental observations of stress-driven grain boundary migration, Science, 2009, 326(5960), p 1686–1690

    Article  CAS  Google Scholar 

  9. M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films, Nanostruct. Mater., 1995, 5(6), p 689–697

    Article  CAS  Google Scholar 

  10. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao, Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel, Science, 2004, 305(5684), p 654–657

    Article  CAS  Google Scholar 

  11. H. Van Swygenhoven and P.M. Derlet, Grain-Boundary Sliding in Nanocrystalline fcc Metals, Phys. Rev. B, 2001, 64(22), p 224105

    Article  CAS  Google Scholar 

  12. A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of Metals III: Fracture and Fatigue of Nanostructured Metallic Materials, Acta Mater., 2016, 107, p 508–544

    Article  CAS  Google Scholar 

  13. K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, 51(19), p 5743–5774

    Article  CAS  Google Scholar 

  14. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma, Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals, Acta Mater., 2007, 55(12), p 4041–4065

    Article  CAS  Google Scholar 

  15. K.S. Siow, A.A.O. Tay, and P. Oruganti, Mechanical Properties of Nanocrystalline Copper and Nickel, Mater. Sci. Technol., 2004, 20(3), p 285–294

    Article  CAS  Google Scholar 

  16. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui, Atomic Mechanism for Dislocation Emission from Nanosized Grain Boundaries, Phys. Rev. B, 2002, 66(2), p 024101

    Article  CAS  Google Scholar 

  17. A. Cao and Y. Wei, Atomistic Simulations of Crack Nucleation and Intergranular Fracture in Bulk Nanocrystalline Nickel, Phys. Rev. B, 2007, 76(2), p 024113

    Article  CAS  Google Scholar 

  18. T. Hanlon, E.D. Tabachnikova, and S. Suresh, Fatigue Behavior of Nanocrystalline Metals and Alloys, Int. J. Fatigue, 2005, 27(10–12), p 1147–1158

    Article  CAS  Google Scholar 

  19. Z. Xia, D. Kujawski, and F. Ellyin, Effect of Mean Stress and Ratcheting Strain on Fatigue Life of Steel, Int. J. Fatigue, 1996, 18(5), p 335–341

    Article  CAS  Google Scholar 

  20. S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Cyclic Plastic Deformation and Cyclic Hardening/Softening Behavior in 304LN Stainless Steel, Theor. Appl. Fract. Mech., 2010, 54(1), p 63–70

    Article  CAS  Google Scholar 

  21. Y. Jiang and H. Sehitoglu, Cyclic Ratcheting of 1070 Steel Under Multiaxial Stress States, Int. J. Plast., 1994, 10(5), p 579–608

    Article  Google Scholar 

  22. T. Hassan and S. Kyriakides, Ratcheting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior, Int. J. Plast., 1994, 10(2), p 149–184

    Article  CAS  Google Scholar 

  23. X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27(9), p 1124–1132

    Article  CAS  Google Scholar 

  24. C.B. Lim, K.S. Kim, and J.B. Seong, Ratcheting and Fatigue Behavior of a Copper Alloy Under Uniaxial Cyclic Loading with Mean Stress, Int. J. Fatigue, 2009, 31(3), p 501–507

    Article  CAS  Google Scholar 

  25. G. Kang, Y. Liu, J. Ding, and Q. Gao, Uniaxial Ratcheting and Fatigue Failure of Tempered 42CrMo Steel: Damage Evolution and Damage-Coupled Visco-Plastic Constitutive Model, Int. J. Plast., 2009, 25(5), p 838–860

    Article  CAS  Google Scholar 

  26. G. Chen, X. Chen, and C.D. Niu, Uniaxial Ratcheting Behavior of 63Sn37Pb Solder with Loading Histories and Stress Rates, Mater. Sci. Eng. A, 2006, 421(1–2), p 238–244

    Article  CAS  Google Scholar 

  27. G.Z. Kang, Y.G. Li, J. Zhang, Y.F. Sun, and Q. Gao, Uniaxial Ratcheting and Failure Behaviors of Two Steels, Theor. Appl. Fract. Mech., 2005, 43(2), p 199–209

    Article  CAS  Google Scholar 

  28. W.J. Chang and T.H. Fang, Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Copper Using Molecular Dynamics Simulation, J. Phys. Chem. Solids, 2003, 64(8), p 1279–1283

    Article  CAS  Google Scholar 

  29. J.F. Panzarino, J.J. Ramos, and T.J. Rupert, Quantitative Tracking of Grain Structure Evolution in a Nanocrystalline Metal During Cyclic Loading, Model. Simul. Mater. Sci. Eng., 2015, 23(2), p 025005

    Article  CAS  Google Scholar 

  30. J. Schiøtz, Strain-Induced Coarsening in Nanocrystalline Metals Under Cyclic Deformation, Mater. Sci. Eng. A, 2004, 375, p 975–979

    Article  CAS  Google Scholar 

  31. D. Farkas, M. Willemann, and B. Hyde, Atomistic Mechanisms of Fatigue in Nanocrystalline Metals, Phys. Rev. Lett., 2005, 94(16), p 165502

    Article  CAS  Google Scholar 

  32. T.J. Rupert and C.A. Schuh, Mechanically Driven Grain Boundary Relaxation: A Mechanism for Cyclic Hardening in Nanocrystalline Ni, Philos. Mag. Lett., 2012, 92(1), p 20–28

    Article  CAS  Google Scholar 

  33. W.J. Chang, Molecular-Dynamics Study of Mechanical Properties of Nanoscale Copper with Vacancies Under Static and Cyclic Loading, Microelectron. Eng., 2003, 65(1–2), p 239–246

    Article  Google Scholar 

  34. B. Moser, T. Hanlon, K.S. Kumar, and S. Suresh, Cyclic Strain Hardening of Nanocrystalline Nickel, Scr. Mater., 2006, 54(6), p 1151–1155

    Article  CAS  Google Scholar 

  35. D. Chen, Structural Modeling of Nanocrystalline Materials, Comput. Mater. Sci., 1995, 3(3), p 327–333

    Article  CAS  Google Scholar 

  36. J. Li, AtomEye: An Efficient Atomistic Configuration Viewer, Model. Simul. Mater. Sci. Eng., 2003, 11(2), p 173

    Article  Google Scholar 

  37. Z. Shao, N. Li, J. Lin, and T.A. Dean, Strain Measurement and Error Analysis in Thermo-Mechanical Tensile Tests of Sheet Metals for Hot Stamping Applications, Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci., 2018, 232(11), p 1994–2008

    Article  Google Scholar 

  38. H. Bei, S. Shim, G.M. Pharr, and E.P. George, Effects of Pre-strain on the Compressive Stress–Strain Response of Mo-Alloy Single-Crystal Micropillars, Acta Mater., 2008, 56(17), p 4762–4770

    Article  CAS  Google Scholar 

  39. X. Yang, Low Cycle Fatigue and Cyclic Stress Ratcheting Failure Behavior of Carbon Steel 45 Under Uniaxial Cyclic Loading, Int. J. Fatigue, 2005, 27(9), p 1124–1132

    Article  CAS  Google Scholar 

  40. J. Jabra, M. Romios, J. Lai, E. Lee, M. Setiawan, J.R. Ogren, and N. Abourialy, The Effect of Thermal Exposure on the Mechanical Properties of 2099-T6 Die Forgings, 2099-T83 Extrusions, 7075-T7651 Plate, 7085-T7452 Die Forgings, 7085-T7651 Plate, and 2397-T87 Plate Aluminum Alloys, J. Mater. Eng. Perform., 2006, 15(5), p 601–607

    Article  CAS  Google Scholar 

  41. H.J. Berendsen, J.V. Postma, W.F. van Gunsteren, A.R.H.J. DiNola, and J.R. Haak, Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, 81(8), p 3684–3690

    Article  CAS  Google Scholar 

  42. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19

    Article  CAS  Google Scholar 

  43. M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of NiZr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469

    Article  CAS  Google Scholar 

  44. M. Meraj and S. Pal, Nano-scale Simulation Based Study of Creep Behavior of Bimodal Nanocrystalline Face Centered Cubic Metal, J. Mol. Model., 2017, 23(11), p 309

    Article  CAS  Google Scholar 

  45. B. von Blanckenhagen, E. Arzt, and P. Gumbsch, Discrete Dislocation Simulation of Plastic Deformation in Metal Thin Films, Acta Mater., 2004, 52(3), p 773–784

    Article  CAS  Google Scholar 

  46. N. Juslin, V. Jansson, and K. Nordlund, Simulation of Cascades in Tungsten-Helium, Philos. Mag., 2010, 90(26), p 3581–3589

    Article  CAS  Google Scholar 

  47. K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T.D. de La Rubia, and J. Tarus, Defect Production in Collision Cascades in Elemental Semiconductors and fcc Metals, Phys. Rev. B, 1998, 57(13), p 7556

    Article  CAS  Google Scholar 

  48. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure during Surface Indentation, Phys. Rev. B, 1998, 58(17), p 11085

    Article  CAS  Google Scholar 

  49. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, and Z.D. Sha, Ab Initio Molecular Dynamics Study of the Local Atomic Structures in Monatomic Metallic Liquid and Glass, Mater. Des., 2015, 77, p 1–5

    Article  CAS  Google Scholar 

  50. D. Faken and H. Jónsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 1994, 2(2), p 279–286

    Article  CAS  Google Scholar 

  51. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2009, 18(1), p 015012

    Article  Google Scholar 

  52. J.F. Panzarino and T.J. Rupert, Tracking Microstructure of Crystalline Materials: A Post-processing Algorithm for Atomistic Simulations, JOM, 2014, 66(3), p 417–428

    Article  CAS  Google Scholar 

  53. Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt, Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel, Science, 2004, 304(5668), p 273–276

    Article  CAS  Google Scholar 

  54. M. Meraj, N. Yedla, and S. Pal, Role of W on the Dislocation Evolution in Ni-W Alloy during Tension Followed by Compression Loading, Met. Mater. Int., 2016, 22(3), p 373–382

    Article  CAS  Google Scholar 

  55. F. Panzarino, Quantification of Grain Boundary Mediated Plasticity Mechanisms in Nanocrystalline Metals, Doctoral Dissertation, UC Irvine, 2016.

  56. M.F. Ashby and R.A. Verrall, Diffusion-Accommodated Flow and Superplasticity, Acta Metall., 1973, 21(2), p 149–163

    Article  CAS  Google Scholar 

  57. K.E. Harris, V.V. Singh, and A.H. King, Grain Rotation in Thin Films of Gold, Acta Mater., 1998, 46(8), p 2623–2633

    Article  CAS  Google Scholar 

  58. M.Y. Gutkin, I.A. Ovidko, and N.V. Skiba, Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials, Acta Mater., 2003, 51(14), p 4059–4071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Gururaj, K., Meraj, M. et al. Molecular Dynamics Simulation Study of Uniaxial Ratcheting Behaviors for Ultrafine-Grained Nanocrystalline Nickel. J. of Materi Eng and Perform 28, 4918–4930 (2019). https://doi.org/10.1007/s11665-019-04256-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04256-z

Keywords

Navigation