Skip to main content
Log in

Effect of Stress States on Twinning Behavior in Twinning-Induced Plasticity Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of stress state on the twin structures and kinetics in twinning-induced plasticity (TWIP) steel have been investigated to understand the twinning behaviors in more detail. Twinning behaviors of tension, compression, wire drawing, and caliber rolling were evaluated and compared using the EBSD technique, TEM measurement, and Schmid factor analysis. Twin structures, such as twin thickness, twin variant, twin shape, and twin kinetics were different with stress states. The specimen under compressive stress had wavy-shaped twins, less twin variant, lower twin thickness, and more twin volume fraction in comparison with the specimen under tensile stress. The different structures and kinetics of deformation twin with stress state were highly related to the grain rotation during plastic deformation. Under tensile stress, the grain rotation to <111> orientation, twinning-favored regions by Schmid factor analysis, encouraged the lateral growth of twins, more twin variants, and straight-type twins, while the grain rotation to <110> orientation under compressive stress suppressed the twin growth and twin variant and developed wavy-shaped twins. Drawn wire and caliber-rolled wire had both twin features under tensile and compressive stress states and higher twin volume fraction since complex stress state that combined tension and compression was applied in these processes. The hardness values were strongly related to the twin volume fraction with strain and stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships, Curr. Opin. Solid State Mater. Sci., 2011, 15, p 141–168

    Article  Google Scholar 

  2. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409

    Article  Google Scholar 

  3. B.C. De Cooman, Y. Estrin, and S.K. Kim, Twinning-Induced Plasticity (TWIP) Steels, Acta Mater., 2018, 142, p 283–362

    Article  Google Scholar 

  4. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22Mn-0.6C TWIP Steel, Mater. Sci. Eng. A, 2010, 527, p 3552–3560

    Article  Google Scholar 

  5. R. Ueji, Y. Takagi, N. Tsuchida, K. Shinagawa, Y. Tanaka, and T. Mizuguchi, Crystallographic Orientation Dependence of e-Martensite Transformation During Tensile Deformation of Polycrystalline 30% Mn Austenitic Steel, Mater. Sci. Eng. A, 2013, 576, p 14–20

    Article  Google Scholar 

  6. Y.N. Dastur and W.C. Leslie, Mechanism of Work Hardening in Hadfield Manganese Steel, Metall. Trans. A, 1981, 12, p 749–759

    Article  Google Scholar 

  7. L. Chen, H.S. Kim, S.K. Kim, and B.C. DeCooman, Localized Deformation Due to Portevin–LeChatelier Effect in 18Mn-0.6C TWIP Austenitic Steel, ISIJ Int., 2007, 47, p 1804–1812

    Article  Google Scholar 

  8. L. Qian, P. Guo, F. Zhang, J. Meng, and M. Zhang, Abnormal Room Temperature Serrated Flow and Strain Rate Dependence of Critical Strain of a Fe-Mn-C Twin-Induced Plasticity Steel, Mater. Sci. Eng. A, 2013, 561, p 266–269

    Article  Google Scholar 

  9. S.J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman, On the Origin of Dynamic Strain Aging in Twinning-Induced Plasticity Steels, Acta Mater., 2011, 59, p 6809–6819

    Article  Google Scholar 

  10. I. Karaman, H. Sehitoglu, A. Beaudoin, Y.I. Chumlyakov, H.J. Maier, and C.N. Tome, Modeling the Deformation Behavior of Hadfield Steel Single and Polycrystals Due to Twinning and Slip, Acta Mater., 2000, 48, p 2031–2047

    Article  Google Scholar 

  11. O. Bouaziz, S. Allain, and C. Scott, Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels, Scr. Mater., 2008, 58, p 484–487

    Article  Google Scholar 

  12. J.G. Sevillano, An Alternative Model for the Strain Hardening of FCC Alloys That Twin, Validated for Twinning-Induced Plasticity Steel, Scr. Mater., 2009, 60, p 336–339

    Article  Google Scholar 

  13. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions, Mater. Sci. Eng., A, 2009, 500, p 196–206

    Article  Google Scholar 

  14. K. Renard and P.J. Jacques, On the Relationship Between Work Hardening and Twinning Rate inTWIP Steels, Mater. Sci. Eng. A, 2012, 542, p 8–14

    Article  Google Scholar 

  15. J.E. Jin and Y.K. Lee, Strain Hardening Behavior of a Fe-18Mn-0.6C-1.5Al TWIP Steel, Mater. Sci. Eng. A, 2009, 527, p 157–161

    Article  Google Scholar 

  16. J.E. Jin and Y.K. Lee, Effect of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel, Acta Mater., 2012, 60, p 1680–1688

    Article  Google Scholar 

  17. I. Gutierrez-Urrutia and D. Raabe, Dislocation and Twin Substructure Evolution During Strain Hardening of an Fe-22Mn-0.6C TWIP Steel Observed by Electron Channeling Contrast Imaging, Acta Mater., 2011, 59, p 6449–6462

    Article  Google Scholar 

  18. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys, Mater. Sci. Eng. A, 2004, 387–389, p 158–162

    Article  Google Scholar 

  19. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076–3090

    Article  Google Scholar 

  20. S. Curtze and V.T. Kuokkala, Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate, Acta Mater., 2010, 58, p 5129–5141

    Article  Google Scholar 

  21. J.K. Kim and B.C. De Cooman, Stacking Fault Energy and Deformation Mechanisms in Fe-xMn-0.6C-yAl TWIP Steel, Mater. Sci. Eng. A, 2016, 676, p 216–231

    Article  Google Scholar 

  22. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier, Deformation of Single Crystal Hadfield Steel by Twinning and Slip, Acta Mater., 2000, 48, p 1345–1359

    Article  Google Scholar 

  23. L. Brake, L. Kestens, and J. Penning, Direct Observation of the Twinning Mechanism in an Austenitic Fe-Mn-C Steel, Scr. Mater., 2009, 61, p 220–222

    Article  Google Scholar 

  24. S. Sato, E.P. Kwon, M. Imafuku, K. Wagatsuma, and S. Suzuki, Microstructural Characterization of High-Manganese Austenitic Steels with Different Stacking Fault Energies, Mater. Charact., 2011, 62, p 781–788

    Article  Google Scholar 

  25. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang, Dependence of Deformation Twinning on Grain Orientation in a High Manganese Steel, Scr. Mater., 2006, 55, p 629–631

    Article  Google Scholar 

  26. L. Meng, P. Yang, Q. Xie, H. Ding, and Z. Tang, Dependence of Deformation Twinning on Grain Orientation in Compressed High Manganese Steels, Scr. Mater., 2007, 56, p 931–934

    Article  Google Scholar 

  27. J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, and N.J. Kim, Microstructural Evolution and Deformation Behavior of Twinning-Induced Plasticity (TWIP) Steel During Wire Drawing, Mater. Sci. Eng. A, 2015, 644, p 41–52

    Article  Google Scholar 

  28. K. Renard, H. Idrissi, D. Schryvers, and P.J. Jacques, On the Stress State Dependence of the Twinning Rate and Work Hardening in Twinning-Induced Plasticity Steels, Scr. Mater., 2012, 66, p 966–971

    Article  Google Scholar 

  29. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, On the Relationship Between the Twin Internal Structure and the Work Hardening Rate of TWIP Steels, Scr. Mater., 2010, 63, p 961–964

    Article  Google Scholar 

  30. M. Ghasri-Khouzani and J.R. McDermid, Effect of Carbon Content on the Mechanical Properties and Microstructure Evolution of Fe-22Mn-C Steels, Mater. Sci. Eng. A, 2015, 621, p 118–127

    Article  Google Scholar 

  31. J.K. Hwang, I.H. Son, J.Y. Yoo, A. Zargaran, and N.J. Kim, Effect of Reduction of Area on Microstructure and Mechanical Properties of Twinning-Induced Plasticity Steel During Wire Drawing, Met. Mater. Int., 2015, 21, p 815–822

    Article  Google Scholar 

  32. J.K. Hwang, Effects of Caliber Rolling on Microstructure and Mechanical Properties in Twinning-Induced Plasticity (TWIP) Steel, Mater. Sci. Eng. A, 2018, 711, p 156–164

    Article  Google Scholar 

  33. K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, and Y.K. Lee, The Effects of Si on the Mechanical Twinning and Strain Hardening of Fe-18Mn-0.6C Twinning-Induced Plasticity Steel, Acta Mater., 2013, 61, p 3399–3410

    Article  Google Scholar 

  34. M.G. Stout and J.A. O’Rourke, Experimental Deformation Textures of OFE Copper and 70:30 Brass From Wire Drawing, Compression, and Torsion, Metall. Trans. A, 1989, 20A, p 125–131

    Article  Google Scholar 

  35. R.K. Chin and P.S. Stelf, A Computational Study of Strain Inhomogeneity in Wire Drawing, Int. J. Mach. Tools Manuf., 1995, 35, p 1087–1098

    Article  Google Scholar 

  36. G.H. Hasani, R. Mahmudi, and A. Karimi-Taheri, On the Strain Inhomogeneity in Drawn Copper Wires, Int. J. Mater. Form., 2010, 3, p 59–64

    Article  Google Scholar 

  37. J.K. Hwang, Drawing Direction Effect on Microstructure and Mechanical Properties of Twinning-Induced Plasticity Steel During Wire Drawing, J. Mater. Eng. Perform., 2019, 28, p 2834–2844

    Article  Google Scholar 

  38. J. Chen, W. Yan, C.X. Liu, R.G. Ding, and X.H. Fan, Dependence of Texture Evolution on Initial Orientation in Drawn Single Crystal Copper, Mater. Charact., 2011, 62, p 237–242

    Article  Google Scholar 

  39. A.A. Saleh, E.V. Pereloma, and A.A. Gazder, Texture Evolution of Cold Rolled and Annealed Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP Steel, Mater. Sci. Eng. A, 2011, 528, p 4537–4549

    Article  Google Scholar 

  40. G. Palumbo and K.T. Aust, Structure-Dependence of Intergranular Corrosion in High Purity Nickel, Acta Metall. Mater., 1990, 38, p 2343–2352

    Article  Google Scholar 

  41. C. Efstathiou and H. Sehitoglu, Strain Hardening and Heterogeneous Deformation During Twinning in Hadfield Steel, Acta Mater., 2010, 58, p 1479–1488

    Article  Google Scholar 

  42. Y.S. Jung, S. Kang, K. Jeong, J.G. Jung, and Y.K. Lee, The Effects of N on the Microstructures and Tensile Properties of Fe-15Mn-0.6C-2Cr-xN Twinning-Induced Plasticity Steels, Acta Mater., 2013, 61, p 6541–6548

    Article  Google Scholar 

  43. H.K. Yang, Z.J. Zhang, and Z.F. Zhang, Comparison of Work Hardening and Deformation Twinning Evolution in Fe-22Mn-0.6C-(1.5Al) Twinning-Induced Plasticity Steels, Scr. Mater., 2013, 68, p 992–995

    Article  Google Scholar 

  44. S. Mahajan and G.Y. Chin, Twin–Slip, Twin–Twin and Slip–Twin Interactions in Co-8 wt.% Fe Alloy Single Crystals, Acta Metall., 1973, 21, p 173–179

    Article  Google Scholar 

  45. P. Mullner, C. Solenthaler, and M.O. Speidel, Second Order Twinning in Austenitic Steel, Acta Metall. Mater., 1994, 42, p 1727–1732

    Article  Google Scholar 

  46. M. Bonisch, Y. Wu, and H. Sehitoglu, Hardening by Slip–Twin and Twin–Twin Interactions in FeMnNiCoCr, Acta Mater., 2018, 153, p 391–403

    Article  Google Scholar 

  47. A. Stukowski and K. Albe, Nanotwinned fcc Metals: Strengthening Versus Softening Mechanisms, Phys. Rev. B, 2010, 82, p 224103

    Article  Google Scholar 

  48. S. Alkan, A. Ojha, and H. Sehitoglu, Determination of Latent Hardening Response for FeNiCoCrMn for Twin–Twin Interactions, Acta Mater., 2018, 147, p 149–164

    Article  Google Scholar 

  49. H.K. Yang, Y.Z. Tian, Z.J. Zhang, and Z.F. Zhang, Simultaneously Improving the Strength and Ductility of Fe-22Mn-0.6C Twinning-Induced Plasticity Steel Via Nitrogen Addition, Mater. Sci. Eng. A, 2018, 715, p 276–280

    Article  Google Scholar 

  50. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51, p 3063–3071

    Article  Google Scholar 

  51. S.M. Lee, S.J. Lee, S. Lee, J.H. Nam, and Y.K. Lee, Tensile Properties and Deformation Mode of Si-Added Fe-18Mn-0.6C Steels, Acta Mater., 2018, 144, p 738–747

    Article  Google Scholar 

  52. K.T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee, Stacking Fault Energy and Plastic Deformation of Fully Austenitic High Manganese Steels: Effect of Al Additon, Mater. Sci. Eng. A, 2010, 527, p 3651–3661

    Article  Google Scholar 

  53. V. Shterner, L.B. Timokhina, A.D. Rollett, and H. Beladi, The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel, Metall. Mater. Trans. A, 2018, 49, p 2597–2611

    Article  Google Scholar 

  54. H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. De Cooman, and S.K. Kim, Orientation Dependence of Twinning and Strain Hardening Behaviour of a High Manganese Twinning Induced Plasticity Steel with Polycrystalline Structure, Acta Mater., 2011, 59, p 7787–7799

    Article  Google Scholar 

  55. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Energy Pathways and Directionality in Deformation Twinning, Appl. Phys. Lett., 2007, 91, p 181916

    Article  Google Scholar 

  56. A.H. Cottrell and B.A. Bilby, A Mechanism for the Growth of Deformation Twins in Crystals, Philos. Mag., 1951, 42, p 573–581

    Article  Google Scholar 

  57. J.A. Venables, Deformation Twinning in Face-Centred Cubic Metals, Philos. Mag., 1961, 6, p 379–396

    Article  Google Scholar 

  58. S. Mahajan and G.Y. Chin, Formation of Deformation Twins in fcc Crystals, Acta Metall., 1973, 21, p 1353–1363

    Article  Google Scholar 

  59. T. Mori and H. Fujita, Dislocation Reactions During Deformation Twinning in Cu-11 at.% Al Single Crystals, Acta Metall., 1980, 28, p 771–776

    Article  Google Scholar 

Download references

Acknowledgments

This Research was supported by the Tongmyong University Research Grants 2018 (2018A016-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Ki Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JK. Effect of Stress States on Twinning Behavior in Twinning-Induced Plasticity Steel. J. of Materi Eng and Perform 28, 4811–4825 (2019). https://doi.org/10.1007/s11665-019-04254-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04254-1

Keywords

Navigation