Skip to main content

Advertisement

Log in

Mechanical and Frictional Performance of Ta and Ta-Ag Alloy Films Deposited at Different Sputtering Powers

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical and tribological properties of tantalum and its alloy films are greatly influenced by their phase transformation. In this study, Ta and Ta-Ag films were prepared on carbon steel substrate by DC magnetron sputtering with various sputtering powers. The amorphous and nanocrystalline Ta and Ta-Ag film were produced at different sputtering powers from 40 to 110 W. The frictional properties of Ta and Ta-Ag films were investigated by rubbing against Si3N4 ball from RT to 700 °C. The nanocrystalline Ta-Ag films shows higher hardness values (12 GPa) compared with amorphous phase. The nanocrystalline Ta90-Ag8 film shows a low friction coefficient of about 0.20-0.30 when rubbing against Si3N4 ball at 700 °C. The segregation of Ag can effectively reduce friction coefficients of Ta-Ag film at 700 °C. The Ta-Ag films show high structure stability even after friction at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.W.S.L. Lee, Phase, Residual Stress, and Texture in Triode-Sputtered Tantalum Coatings on Steel, Surf. Coat. Technol., 1998, 108-109, p 65–72

    Article  Google Scholar 

  2. K. Valleti, A. Subrahmanyam, and S.V. Joshi, Growth of Nano Crystalline Near α Phase Tantalum Thin Films at Room Temperature Using Cylindrical Magnetron Cathode, Surf. Coat. Technol., 2008, 202(14), p 3325–3331

    Article  Google Scholar 

  3. L. Hallmann and P. Ulmer, Effect of Sputtering Parameters and Substrate Composition on the Structure of Tantalum Thin Films, Appl. Surf. Sci., 2013, 282, p 1–6

    Article  Google Scholar 

  4. S. Myers, J. Lin, R.M. Souza et al., The β to α Phase Transition of Tantalum Coatings Deposited by Modulated Pulsed Power Magnetron Sputtering, Surf. Coat. Technol., 2013, 214, p 38–45

    Article  Google Scholar 

  5. A.A. Navid and A.M. Hodge, Nanostructured Alpha and Beta Tantalum Formation-Relationship Between Plasma Parameters and Microstructure, Mater. Sci. Eng., A, 2012, 536, p 49–56

    Article  Google Scholar 

  6. W.-L. Wang, W.-C. Chen, K.-T. Peng et al., The Influence of Amorphous TaNx Under-Layer on the Crystal Growth of Over-Deposited Ta Film, Thin Solid Films, 2016, 603, p 34–38

    Article  Google Scholar 

  7. K. Ino, T. Shinohara, T. Ushiki et al., Ion Energy, Ion Flux, Ion Species Effects on Crystallographic and Electrical Properties of Sputter-Deposited Ta Thin Films, J. Vac. Sci. Technol. A Vac. Surf. Films, 1997, 15(5), p 2627–2635

    Article  Google Scholar 

  8. R. Knepper, B. Stevens, and S.P. Baker, Effect of oxygen on the Thermomechanical Behavior of Tantalum Thin Films During the β-α Phase Transformation, J. Appl. Phys., 2006, 100(12), p 123508

    Article  Google Scholar 

  9. Y.M. Zhou, Z. Xie, H.N. Xiao et al., Effects of Deposition Parameters on Tantalum Films Deposited by Direct Current Magnetron Sputtering, Vacuum, 2008, 83(2), p 286–291

    Article  Google Scholar 

  10. M. Grosser and U. Schmid, The Impact of Sputter Conditions on the Microstructure and on the Resistivity of Tantalum Thin Films, Thin Solid Films, 2009, 517(16), p 4493–4496

    Article  Google Scholar 

  11. K. Stella, D. Bürstel, S. Franzka et al., Preparation and Properties of Thin Amorphous Tantalum Films Formed by Small e-Beam Evaporators, J. Phys. D Appl. Phys., 2009, 42(13), p 135417

    Article  Google Scholar 

  12. Z.H. Cao, P.Y. Li, and X.K. Meng, Nanoindentation Creep Behaviors of Amorphous, Tetragonal, and bcc Ta Films, Mater. Sci. Eng. A, 2009, 516(1-2), p 253–258

    Article  Google Scholar 

  13. M.T. Janish, W.M. Mook, and C.B. Carter, Nucleation of fcc Ta When Heating Thin Films, Scr. Mater., 2015, 96, p 21–24

    Article  Google Scholar 

  14. J. Narayan, V. Bhosle, A. Tiwari et al., Methods for Processing Tantalum Films of Controlled Microstructures and Properties, J. Vac. Sci. Technol. A., 2006, 24(5), p 1948–1954

    Article  Google Scholar 

  15. J. Wang, J.L. Li, H. Li et al., Friction and Wear Properties of Amorphous and Nanocrystalline Ta-Ag Films at Elevated Temperatures as Function of Working Pressure, Surf. Coat. Technol., 2018, 353(15), p 135–147

    Article  Google Scholar 

  16. J.F. Curry, T.F. Babuska, T.A. Furnish et al., Achieving Ultralow Wear with Stable Nanocrystalline Metals, Adv. Mater., 2018, 1802026, p 1–7

    Google Scholar 

  17. W. Qin, L.C. Fu, J.J. Zhu et al., Tribological Properties of Self-Lubricating Ta-Cu films, Appl. Surf. Sci., 2018, 435, p 1105–1113

    Article  Google Scholar 

  18. F. Zeng, Y. Gao, L. Li et al., Elastic Modulus and Hardness of Cu-Ta Amorphous Films, J. Alloys Compd., 2005, 389(1-2), p 75–79

    Article  Google Scholar 

  19. C.M. Müller, S. Parviainen, F. Djurabekova et al., The As-Deposited Structure of Co-sputtered Cu-Ta Alloys, Studied by X-ray Diffraction and Molecular Dynamics Simulations, Acta Mater., 2015, 82, p 51–63

    Article  Google Scholar 

  20. D.S. Stone, S. Harbin, H. Mohseni et al., Lubricious Silver Tantalate Films for Extreme Temperature Applications, Surf. Coat. Technol., 2013, 217, p 140–146

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 2011, 7(06), p 1564–1583

    Article  Google Scholar 

  22. M. Zhang, Y.F. Zhang, P.D. Rack et al., Nanocrystalline Tetragonal Tantalum Thin Films, Scr. Mater., 2007, 57(11), p 1032–1035

    Article  Google Scholar 

  23. A.A. Navid and A.M. Hodge, Controllable Residual Stresses in Sputtered Nanostructured Alpha-Tantalum, Scr. Mater., 2010, 63(8), p 867–870

    Article  Google Scholar 

  24. F. Misják, P.B. Barna, and A.L. Tóth, Structure and Mechanical Properties of Cu-Ag Nanocomposite Films, Thin Solid Films, 2008, 516, p 3931–3934

    Article  Google Scholar 

  25. J.L. Li, J. Wang, A. Kumar et al., High Temperatures Tribological Properties of Ta-Ag Films Deposited at Various Working Pressures and Sputtering Powers, Surf. Coat. Technol., 2018, 349, p 186–197

    Article  Google Scholar 

  26. D.S. Stone, H. Gao, C. Chantharangsi et al., Load-Dependent High Temperature Tribological Properties of Silver Tantalate Coatings, Surf. Coat. Technol., 2014, 244, p 37–44

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Natural Science Foundation of China (No. 51101087), China Postdoctoral Science Foundation (Nos. 2013M540450, 2014T70520), and Fundamental Research Funds for the Central Universities (No. 30917014106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, X., Wang, J. et al. Mechanical and Frictional Performance of Ta and Ta-Ag Alloy Films Deposited at Different Sputtering Powers. J. of Materi Eng and Perform 28, 5037–5046 (2019). https://doi.org/10.1007/s11665-019-04234-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04234-5

Keywords

Navigation