Skip to main content

Advertisement

Log in

Cyclic Thermal Oxidation Evaluation to Improve Ti6Al4V Surface in Applications as Biomaterial

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thermal oxidation treatments are widely used to modify titanium surfaces. Thermally oxidized titanium alloys are used as biomaterials due to their better surface properties, such as corrosion resistance. However, the use of cyclic thermal treatment for this purpose has not yet been reported. This paper’s objective was to compare roughness, microhardness and corrosion resistance after cyclic and conventional isothermal heat treatments in a Ti6Al4V alloy. The heat treatments were performed over a period of 24 h with a maximum temperature of 650 °C, and cyclic conditions were executed from 200 to 400 °C for 48 cycles, each lasting 0.5 h. After the thermal treatments, roughness was measured through profilometer and atomic force microscopy, Vickers microhardness was evaluated, and polarization corrosion tests were performed in simulated body fluid. All treatments increased surface roughness, microhardness and corrosion resistance at 500 mV above open-circuit potential in polarization tests, compared to the material without oxidation. These results are associated with rutile formation, observed through XRD analysis. Although the isothermal and cyclic treatments presented similar behaviors, the 650-200 °C cyclic heat treatment provided an intermediate roughness and produced a slightly better corrosion resistance, demonstrating that cyclic thermal treatments are a viable alternative for improving titanium alloy surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8, p 821–827. https://doi.org/10.5281/zenodo.1094481

    Google Scholar 

  2. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  3. M. Niinomi, Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods, Sci. Technol. Adv. Mater., 2003, 4, p 445–454. https://doi.org/10.1016/j.stam.2003.09.002

    Article  Google Scholar 

  4. S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25, p 357–362. https://doi.org/10.1016/j.msec.2004.12.013

    Article  Google Scholar 

  5. E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25, p 5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021

    Article  Google Scholar 

  6. B.D. Boyan, T.W. Hummert, D.D. Dean, and Z. Schwartz, Role of Material Surfaces in Regulating Bone and Cartilage Cell Response, Biomaterials, 1996, 17, p 137–146. https://doi.org/10.1016/0142-9612(96)85758-9

    Article  Google Scholar 

  7. Z. Schwartz, J.Y. Martin, D.D. Dean, J. Simpson, D.L. Cochran, and B.D. Boyan, Effect of Titanium Surface Roughness on Chondrocyte Proliferation, Matrix Production, and Differentiation Depends on the State of Cell Maturation, J. Biomed. Mater. Res., 1996, 30, p 145–155. https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<145::AID-JBM3>3.0.CO;2-R

    Article  Google Scholar 

  8. B. Chehroudi, D. McDonnell, and D.M. Brunette, The Effects of Micromachined Surfaces on Formation of Bonelike Tissue on Subcutaneous Implants as Assessed by Radiography and Computer Image Processing, J. Biomed. Mater. Res., 1998, 34, p 279–290. https://doi.org/10.1002/(SICI)1097-4636(19970305)34:3<279::AID-JBM2>3.0.CO;2-H

    Article  Google Scholar 

  9. F. Borgioli, E. Galvanetto, F. Iozzelli, and G. Pradelli, Improvement of Wear Resistance of Ti-6Al-4V Alloy by Means of Thermal Oxidation, Mater. Lett., 2005, 59, p 2159–2162. https://doi.org/10.1016/j.matlet.2005.02.054

    Article  Google Scholar 

  10. A. Gutiérrez, F. Pászti, A. Climent-Font, J.A. Jiménez, and M.F. López, Comparative Study of the Oxide Scale Thermally Grown on Titanium Alloys by Ion Beam Analysis Techniques and Scanning Electron Microscopy, J. Mater. Res., 2008, 23, p 2245–2253. https://doi.org/10.1557/JMR.2008.0281

    Article  Google Scholar 

  11. S. Kumar, T.S.N. Sankara Narayanan, S. Ganesh Sundara Raman, and S.K. Seshadri, Thermal Oxidation of Ti6Al4V Alloy: Microstructural and Electrochemical Characterization, Mater. Chem. Phys., 2010, 119, p 337–346. https://doi.org/10.1016/j.matchemphys.2009.09.007

    Article  Google Scholar 

  12. J.R. Nicholls and M.J. Bennett, Cyclic Oxidation—Guidelines for Test Standardisation, Aimed at the Assessment of Service Behaviour†, Mater. High Temp., 2000, 17, p 413–428. https://doi.org/10.1179/mht.2000.17.3.005

    Google Scholar 

  13. H.E. Evans, Stress Effects in High Temperature Oxidation of Metals, Int. Mater. Rev., 1995, 40, p 1–40. https://doi.org/10.1179/imr.1995.40.1.1

    Article  Google Scholar 

  14. A.M. De Sousa Malafaia, V.R. do Nascimento, L. Mendes Sousa, M. Eduardo, and M.F. de Oliveira, Anomalous Cyclic Oxidation Behaviour of an Fe-Mn-Si-Cr-Ni Alloy—A Finite Element Analysis, Corros. Sci., 2019, 147, p 223–230. https://doi.org/10.1016/j.corsci.2018.11.018

    Article  Google Scholar 

  15. A.M. de Sousa Malafaia and M.F. De Oliveira, Anomalous Cyclic Oxidation Behaviour of a Fe-Mn-Si-Cr-Ni Shape Memory Alloy, Corros. Sci., 2017, 119, p 112–117. https://doi.org/10.1016/j.corsci.2017.02.026

    Article  Google Scholar 

  16. G. Fargas, J.J. Roa, B. Sefer, R. Pederson, M.L. Antti, and A. Mateo, Influence of Cyclic Thermal Treatments on the Oxidation Behavior of Ti-6Al-2Sn-4Zr-2Mo Alloy, Mater. Charact., 2018, 145, p 218–224. https://doi.org/10.1016/j.matchar.2018.08.049

    Article  Google Scholar 

  17. C.C. Chou, P.W. Kao, and G.H. Cheng, Accelerated Spheroidization of Hypoeutectoid Steel by the Decomposition of Supercooled Austenite, J. Mater. Sci., 1986, 21, p 3339–3344. https://doi.org/10.1007/BF00553377

    Article  Google Scholar 

  18. W. Szkliniarz, J. Chrapoński, A. Kościelna, and B. Serek, Substructure of Titanium Alloys After Cyclic Heat Treatment, Mater. Chem. Phys., 2003, 81, p 538–541. https://doi.org/10.1016/S0254-0584(03)00069-5

    Article  Google Scholar 

  19. Z. Lv, X. Ren, Z. Li, Z. Lu, M. Gao, and T. Beijing, Effects of Two Different Cyclic Heat Treatments on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel, Mater. Res., 2015, 18, p 304–312. https://doi.org/10.1590/1516-1439.302414

    Article  Google Scholar 

  20. S. Izman, M. Rafiq, M. Anwar, E.M. Nazim, R. Rosliza, A. Shah, M.A. Hass, Surface Modification Techniques for Biomedical Grade of Titanium Alloys: Oxidation, Carburization and Ion Implantation Processes, in: Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications (InTech, 2012), pp. 201–228. https://doi.org/10.5772/36318

  21. T. Kokubo and H. Takadama, How Useful is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915. https://doi.org/10.1016/J.BIOMATERIALS.2006.01.017

    Article  Google Scholar 

  22. C.N. Elias, Y. Oshida, J.H.C. Lima, and C.A. Muller, Relationship Between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque, J. Mech. Behav. Biomed. Mater., 2008, 1, p 234–242. https://doi.org/10.1016/j.jmbbm.2007.12.002

    Article  Google Scholar 

  23. A. Bloyce, P. Qi, H. Dong, and T. Bell, Surface Modification of Titanium Alloys for Combined Improvements in Corrosion and Wear Resistance, Surf. Coat. Technol., 1998, 107, p 125–132. https://doi.org/10.1016/S0257-8972(98)00580-5

    Article  Google Scholar 

  24. H.J. Kim, S.H. Kim, M.S. Kim, E.J. Lee, H.G. Oh, W.M. Oh, S.W. Park, W.J. Kim, G.J. Lee, N.G. Choi, J.T. Koh, D.B. Dinh, R.R. Hardin, K. Johnson, V.L. Sylvia, J.P. Schmitz, and D.D. Dean, Varying Ti-6Al-4V Surface Roughness Induces Different Early Morphologic and Molecular Responses in MG63 Osteoblast-Like Cells, J. Biomed. Mater. Res. Part A, 2005, 74A, p 366–373. https://doi.org/10.1002/jbm.a.30327

    Article  Google Scholar 

  25. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, Relationship Between Surface Properties (Roughness, Wettability) of Titanium and Titanium Alloys and Cell Behaviour, Mater. Sci. Eng. C, 2003, 23, p 551–560. https://doi.org/10.1016/S0928-4931(03)00033-X

    Article  Google Scholar 

  26. X. Zhu, J. Chen, L. Scheideler, R. Reichl, and J. Geis-Gerstorfer, Effects of Topography and Composition of Titanium Surface Oxides on Osteoblast Responses, Biomaterials, 2004, 25, p 4087–4103. https://doi.org/10.1016/j.biomaterials.2003.11.011

    Article  Google Scholar 

  27. A.M. Huntz, Stresses in NiO, Cr2O3 and Al2O3 Oxide Scales, Mater. Sci. Eng. A, 1995, 201, p 211–228. https://doi.org/10.1016/0921-5093(94)09747-X

    Article  Google Scholar 

  28. S. Zeng, A. Zhao, H. Jiang, X. Fan, X. Duan, and X. Yan, Cyclic Oxidation Behavior of the Ti-6Al-4V Alloy, Oxid. Met., 2014, 81, p 467–476. https://doi.org/10.1007/s11085-013-9458-z

    Article  Google Scholar 

  29. S.S. Jiang and K.F. Zhang, Study on Controlling Thermal Expansion Coefficient of ZrO2-TiO2 Ceramic Die for Superplastic Blow-Forming High Accuracy Ti-6Al-4V Component, Mater. Des., 2009, 30, p 3904–3907. https://doi.org/10.1016/J.MATDES.2009.03.023

    Article  Google Scholar 

  30. A.J. Spark, I. Cole, D. Law, D. Marney, and L. Ward, Investigation of Agar as a Soil Analogue for Corrosion Studies, Mater. Corros., 2016, 67, p 7–12. https://doi.org/10.1002/maco.201508312

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge FAPEMIG—Minas Gerais State Agency for Research and Development for the undergraduate research scholarship. We are also grateful to Prof. Dr. Lecino Caldeira for XRD measurements, Prof. Dr. Thalita Chiaramonte for AFM measurements and CMTC—Grenoble INP for SEM characterizations and also XRD tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Mariano de Sousa Malafaia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maestro, C.A.R., Bueno, A.H.S. & de Sousa Malafaia, A.M. Cyclic Thermal Oxidation Evaluation to Improve Ti6Al4V Surface in Applications as Biomaterial. J. of Materi Eng and Perform 28, 4991–4997 (2019). https://doi.org/10.1007/s11665-019-04220-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04220-x

Keywords

Navigation