Skip to main content
Log in

High-Resolution Electron Microscopy and Kinetic Studies of Precipitation Hardening Reactions in Cast Al-5.8Zn-2.2Mg-2.5Cu

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Precipitation age hardening (T6) response of Al-5.8Zn-2.2Mg-2.5Cu alloy in near-net-shaped cast condition was investigated. Cast samples were manufactured using the controlled diffusion solidification (CDS) technology combined with a metallic mold tilt pour gravity casting process. This study was conducted using (1) non-isothermal aging during differential scanning calorimetry (DSC) experiments and (2) isothermal aging during which transient bulk and micro-hardness measurements taken at four aging temperatures of 343, 393, 433 and 473 K. A detailed microstructural investigation combined with a quantitative image analysis was carried out on both DSC and hardness specimens using high-resolution electron microscopy (HREM) and energy-dispersive spectroscopy (EDS) elemental mappings. Hardness measurements were analyzed using a kinetic modeling approach (single state variable combined with a kinetic equation that is valid for the Al-Zn-Mg-Cu alloys). The results confirm the formation of hardening phases of GP zone, intermediate hardening metastable phase η′ and equilibrium phase η. The results of calorimetric measurements, electron microscopy and selected area diffraction patterns are in good agreement and confirm transient precipitation/dissolution sequences. A mean value of activation energy \(Q_{\text{A}}\) of 75 kJ/mol was evaluated for combined bulk diffusion rate of alloying elements during precipitation of strengthening phases within Al matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The nominal composition of the material was (at.%): 96.08 Al, 2.30 Zn, 1.38 Mg and 0.09 Si, with Cu, Fe and Mn in the remainder.

  2. Al-6.4Zn-2.2 Mg-2.3Cu (wt.%).

  3. Al-8.5Zn-1.9 Mg-2.2Cu (wt.%).

  4. ImageJ, Image processing and Analysis in Java, 1.42q Java 1.6.0 (32 bits) (https://imagej.net)

    .

  5. Al-5.5Zn-0.80 Mg-0.16Zr [0.016Cu-0.010Mn-0.008Ti-0.002Cr-0.17Fe-0.05Si] (composition is in wt.%, and minor elements appear in brackets)

    .

References

  1. D. Saha, S. Shankar, D. Apelian, and M.M. Makhlouf, Casting of Aluminum-Based Wrought Alloys Using Controlled Diffusion Solidification, Metall. Mater. Trans. A, 2004, 35, p 2174–2180

    Article  Google Scholar 

  2. A.A. Khalaf, P. Ashtari, and S. Shankar, Formation of Non-dendritic Primary Al Phase in Hypoeutectic Alloys in CDS: a Hypothesis, Metall. Mater. Trans. B, 2009, 40, p 843–849

    Article  Google Scholar 

  3. A.A. Khalaf and S. Shankar, Favorable Environment for a Nondendritic Morphology in Controlled Diffusion Solidification, Metall. Mater. Trans. A, 2011, 42, p 2456–2465

    Article  Google Scholar 

  4. A.A. Khalaf and S. Shankar, Effect of Mixing Rate on the Morphology of Primary Al Phase in the Controlled Diffusion Solidification (CDS) Process, J. Mater. Sci., 2012, 47, p 8153–8166

    Article  Google Scholar 

  5. K. Symeonidis, The Controlled Diffusion Solidification Process: Fundamentals and Principles, Ph.D. Dissertation, Worcester Polytechnic Institute (WPI), 2009

  6. A.A. Khalaf, Controlled Diffusion Solidification: Process Mechanism and Parameter Study, Ph.D. Dissertation, McMaster University, 2010

  7. A.A. Khalaf, Mechanism of Controlled Diffusion Solidification: Mixing, Nucleation and Growth, Acta Mater., 2016, 103, p 301–310

    Article  Google Scholar 

  8. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, The Redistribution of Solute Atoms During the Solidification of Metals, Acta Metall., 1953, 1(4), p 428–437

    Article  Google Scholar 

  9. D.A. Porter, K.E. Easterling, Phase Transformations in Metals And Alloys. In: Interphase Interfaces, 1st Ed., Von Nostard Reinhold Company, New York, 1981, p 152

  10. R. Ghiaasiaan, and S. Shankar, Effect of Alloy Composition on Microstructure and Tensile Properties of Net-Shaped Castings of Al–Zn–Mg–Cu Alloys, Int. J. Metalcasting, 2019, 13(2), p 300–310

    Article  Google Scholar 

  11. R. Ghiaasiaan, X. Zeng, and S. Shankar, Controlled Diffusion Solidification (CDS) of Al-Zn-Mg-Cu (7050): Microstructure, Heat Treatment and Mechanical Properties, Mater. Sci. Eng. A, 2014, 594, p 260–277

    Article  Google Scholar 

  12. R. Ghiaasiaan, B. Shalchi-Amirkhiz, and S. Shankar, Quantitative Metallography of Precipitating and Secondary Phases After Strengthening Treatment of Net Shaped Casting of Al-Zn-Mg-Cu (7000) Alloys, Mater. Sci. Eng. A, 2017, 698, p 206–217

    Article  Google Scholar 

  13. R. Ghiaasiaan and S. Shankar, Structure-Property Models in Al-Zn-Mg-Cu Alloys: A Critical Experimental Assessment of Shape Castings, Mat. Sci. Eng. A, 2018, 733, p 235–245

    Article  Google Scholar 

  14. I.J. Polmear, Light Alloys From Traditional Alloys to Nano-crystals, Fourth ed., Butterworth-Heinemann is an imprint of Elsevier, Jordan Hill, Oxford, 2006

  15. L.F. Mondolfo, Structure of Aluminum : Magnesium: Zinc Alloys, Metal. Rev., 1971, 95, p 94–124

    Google Scholar 

  16. H. Loffler, I. Kovacs, and J. Lendvai, Review Decomposition Processes in AI-Zn-Mg Alloys, J. Mater. Sci., 1983, 18, p 2215–2240

    Article  Google Scholar 

  17. F.X. Gang, J.D. Ming, M.Q. Chang, Z.B. You, and W. Tao, Evolution of Eutectic Structures in Al-Zn-Mg-Cu Alloys During Heat Treatment, Trans. Nonferr. Met. Soc. China, 2006, 16, p 577–581

    Article  Google Scholar 

  18. D. Dumont, A. Deschamps, Y. Bréachet, C. Sigli, and J.C. Ehrstrom, Characterisation of Precipitation Microstructures in Aluminum Alloys 7040 and 7050 and Their Relationship to Mechanical Behavior, Mater. Sci. Technol., 2004, 20, p 567–576

    Article  Google Scholar 

  19. Maria D. David, Robin D. Foley, John A. Griffin, and Charles A. Monroe, Microstructural Characterization and Thermodynamic Simulation of Cast Al–Zn–Mg–Cu Alloys, Int. J. Metalcasting, 2016, 10(1), p 2–20

    Article  Google Scholar 

  20. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al-Zn-Mg Alloys and Their Role in artificial ageing, Acta Mater., 2001, 49, p 3443–3451

    Article  Google Scholar 

  21. W.D. Calister, Jr, and D.G. Rethwisch, Material Science and Engineering: An Introduction, 8th ed., Wiley, New York, 2010

    Google Scholar 

  22. J.E. Hatch, Aluminum Properties and Physical Metallurgy, American Society for Metals (ASM), First Printing, Ohio, 1984

    Google Scholar 

  23. A. Deschamps, A. Bigot, F. Livet, P. Auger, Y. Bréachet, and D. Blavette, A Comparative Study of Precipitate Composition and Volume Fraction in an Al–Zn–Mg Alloy Using Tomographic Atom Probe and Small-Angle X-Ray Scattering, Philos. Mag., 2001, 81(10), p 2391–2414

    Article  Google Scholar 

  24. S.K. Maloney, K. Hono, I.J. Polmear, and S.P. Ringer, The Effects of a Trace Addition of Silver Upon Elevated Temperature Ageing of an Al+Zn+Mg Alloy, Micron, 2001, 32, p 741–747

    Article  Google Scholar 

  25. J.A. Wert, Identification of Precipitates In 7075 After High-Temperature Aging, Scr. Metal., 1981, 15, p 445–447

    Article  Google Scholar 

  26. T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller, Investigation of Fine Scale Precipitates in Al–Zn–Mg Alloys After Various Heat Treatments, Mater. Sci. Eng. A, 2002, 327, p 59–64

    Article  Google Scholar 

  27. G. Sha and A. Cerezo, Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516

    Article  Google Scholar 

  28. K. Stiller, P.J. Warren, V. Hansen, J. Angenete, and J. Gjønnes, Investigation of Precipitation in an Al–Zn–Mg Alloy After Two-Step Ageing Treatment at 100° and 150°C, Mater. Sci. Eng. A, 1999, 270, p 55–63

    Article  Google Scholar 

  29. N.Q. Chinh, J. Lendvai, D.H. Ping, and K. Hono, The Effect of Cu on Mechanical and Precipitation Properties of Al–Zn–Mg Alloys, J. Alloys Compd., 2004, 378, p 52–60

    Article  Google Scholar 

  30. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux, Influence of Alloy Composition and Heat Treatment on Precipitate Composition in Al–Zn–Mg–Cu Alloys, Acta Mater., 2010, 58, p 248–260

    Article  Google Scholar 

  31. J. Malek, The Applicability of Johnson-Mehl-Avrami Model in the Thermal Analysis of the Crystallization Kinetics of Glasses, Thermochim. Acta, 1995, 267, p 61–73

    Article  Google Scholar 

  32. M.J. Starink, Kinetic Equations for Diffusion-Controlled Precipitation Reactions, J. Mater. Sci., 1997, 32, p 4061–4070

    Article  Google Scholar 

  33. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys—I. The Model, Acta Metall. Mater., 1990, 38(10), p 1789–1802

    Article  Google Scholar 

  34. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys—II. Applications of the Model, Acta Metal. Mater., 1990, 38(10), p 1803–1812

    Article  Google Scholar 

  35. J.C. Ion, K.E. Easterling, and M.F. Ashby, A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds, Acra Metaria, 1984, 32(11), p 1949–1962

    Google Scholar 

  36. X. Zeng, C. Fergusson, K. Sadayappan, and S. Shankar, Effect of Titanium Levels on the Hot Tearing Sensitivity and Abnormal Grain Growth After T4 Heat Treatment of Al–Zn–Mg–Cu Alloys, Int. J. Metalcast., 2018, 12, p 457–468

    Article  Google Scholar 

  37. Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products, ASTM B557-15, ASTM International, West Conshohocken, PA, 2015, www.astm.org

  38. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM E466-96, ASTM International, West Conshohocken, PA, 1996, www.astm.org

  39. Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM E92-17, ASTM International, West Conshohocken, PA, 2017, www.astm.org

  40. Standard Test Methods for Rockwell Hardness of Metallic Materials”, ASTM E18-18a, ASTM International, West Conshohocken, PA, 2018, www.astm.org.

  41. Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM E1245-03, ASTM International, West Conshohocken, PA, 2003, www.astm.org

  42. G.A. Botton, G. L’esperance, C.E. Gallerneault, and M.D. Ball, Volume Fraction Measurement of Dispersoids in a Thin Foil by Parallel Energy-Loss Spectroscopy: Development and Assessment of the Technique, J. Microsc., 1995, 180, p 217–229

    Article  Google Scholar 

  43. E. Celebi, J. Chen, E.S. Gopi, A. Neustein, and H.V. Poor, Signals and Communication Technology, ISSN: 1860-4862, Springer, Dordrecht, 2010

    Google Scholar 

  44. X.H. Zhu, High-Resolution (Scanning) Transmission Electron Microscopy and Related Techniques for Structural Analysis of Transition Metal Oxide Nanowires. In: Current Microscopy Contributions to Advances in Science and Technology, FORMATEX Microscopy Series No 5, vol. 1, Edited by A. Méndez-Vila, FORMATEX RESEARCH CENTER - C/Zurbaran 1, 2nd Floor, Office 1, 06002 Badajoz, Spain, 2012, p 1190–1203

  45. M.J. Starink, Analysis of Aluminum Based Alloys by Calorimetry: Quantitative Analysis of Reactions and Reaction Kinetics, Int. Mater. Rev., 2004, 49(3–4), p 191–226

    Article  Google Scholar 

  46. R.C. Dorward, Precipitate Coarsening During Overaging of Al–Zn–Mg–Cu Alloy, Mater. Sci. Technol., 1999, 15, p 1133–1138

    Article  Google Scholar 

  47. N. Kamp, I. Sinclair, and M.J. Starink, Toughness-Strength Relations in the Over-aged 7449 Al-Based Alloy, Met. Mater. Trans. A, 2002, 33, p 1125–1136

    Article  Google Scholar 

  48. W. Huo, L. Hou, Y. Lang, H. Cui, L. Zhuang, and J. Zhang, Improved Thermo-Mechanical Processing for Effective Grain Refinement of High-Strength AA 7050 Al Alloy, Mater. Sci. Eng. A, 2015, 626, p 86–93

    Article  Google Scholar 

  49. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al–Zn–Mg Alloys and Their Role in Artificial Aging, Acta Mater., 2001, 49, p 3443–3451

    Article  Google Scholar 

  50. J.D. Embury and R.B. Nicholson, The Nucleation of Precipitates: The System Al-Zn-Mg, Acta Metal., 1965, 13, p 403–417

    Article  Google Scholar 

  51. T.-Y. Ahn, J.-G. Jung, E.-J. Baek, S.S. Hwang, and K. Euh, Temporal Evolution of Precipitates in Multicomponent Al–6Mg–9Si–10Cu–10Zn–3Ni Alloy Studied by Complementary Experimental Methods, J. Alloys Compd., 2017, 701(15), p 660–668

    Article  Google Scholar 

  52. X. Peng, Q. Guo, X. Liang, Y. Deng, G. Yi, X. Guofu, and Z. Yin, Mechanical Properties, Corrosion Behavior and Microstructures of a Non-isothermal Ageing Treated Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2017, 688(14), p 146–154

    Article  Google Scholar 

  53. J. Zheng, Z. Li, R. Luo, and B. Chen, Precipitation in an Al-Zn-Mg-Cu Alloy During Isothermal Aging: Atomic-Scale HAADF-STEM Investigation, Mater. Sci. Eng. A, 2017, 691(13), p 60–70

    Google Scholar 

  54. X.Z. Li, V. Hansen, J. Gjønnes, and L.R. Wallenberg, HREM Study and Structure Modeling of the η′ Phase, the Hardening Precipitates in Commercial Al–Zn–Mg Alloys, Acta Mater., 1999, 47, p 2651–2659

    Article  Google Scholar 

  55. J. Buha, R.N. Lumley, and A.G. Crosky, Secondary Ageing in an Aluminum Alloy 7050, Mater. Sci. Eng. A, 2008, 492, p 1–10

    Article  Google Scholar 

  56. E. Druschitz, R.D. Foley, J. A. Griffin, High Strength Cast Al-Zn-Cu-Mg Aluminum: Solution Treating and Aging Study, Transactions of the American Foundry Society, 117th Annual Metalcasting Congress, 2013, Paper No. 13-1568, p 231–241

  57. H. Akhyar and Husaini, Study on Cooling Curve Behavior During Solidification and Investigation of Impact Strength and Hardness of Recycled, Int. J. Metalcasting, 2016, 10(4), p 452–456

    Article  Google Scholar 

  58. G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, and T.G. Langdon, Influence of Equal-Channel Angular Pressing on Precipitation in an Al–Zn–Mg–Cu Alloy, Acta Mater., 2009, 57(10), p 3123–3132

    Article  Google Scholar 

  59. D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Material Science III, Plenum Press, New York, 1996, p 444–450

    Book  Google Scholar 

  60. D. Su and Y. Zhu, Scanning Moiré Fringe Imaging by Scanning Transmission Electron Microscopy, Ultramicroscopy, 2010, 110(3), p 229–233

    Article  Google Scholar 

  61. D.K. Xu, N. Birbilis, and P.A. Rometsch, The Effect of Pre-ageing Temperature and Retrogression Heating Rate on the Strength and Corrosion Behaviour of AA7150, Corros. Sci., 2012, 54, p 17–25

    Article  Google Scholar 

  62. M. Nicolas and A. Deschamps, Characterisation and Modelling of Precipitate Evolution in an Al–Zn–Mg Alloy During Non-isothermal Heat Treatments, Acta Mater., 2003, 51, p 6077–6094

    Article  Google Scholar 

  63. M. Nicolas, Precipitation Evolution in an Al-Zn-Mg Alloy During Non-isothermal Heat Treatments and in the Heat-Affected Zone of Welded Joints, Ph.D. Dissertation, Institute National Polytechnique de Grenoble – INPG (2002)

  64. R.W. Siegel, Vacancy Concentrations in Metals, J. Nucl. Mater., 1978, 69–70, p 117–146

    Article  Google Scholar 

  65. A. Deschamps, F. Livet, and Y. Bréachet, Influence of Predeformation on Ageing in an Al–Zn–Mg Alloy—I. Microstructure Evolution and Mechanical Properties, Acta Materialia, 1998, 47, p 281–292

    Article  Google Scholar 

  66. A. Deschamps and Y. Bréachet, Influence of Predeformation and Ageing of an Al–Zn–Mg alloy—II. Modeling of Precipitation Kinetics and Yield Stress, Acta Materialia, 1998, 47, p 293–305

    Article  Google Scholar 

  67. J.C. Werenskiold, A. Deschamps, and Y. Bréachet, Characterization and Modeling of Precipitation Kinetics in an Al–Zn–Mg Alloy, Mater. Sci. Eng. A, 2000, 293, p 267–274

    Article  Google Scholar 

  68. D. Wang and Z.Y. Ma, Effect of Pre-strain on Microstructure and Stress Corrosion Cracking of Over-Aged 7050 Aluminum Alloy, J. Alloys Compd., 2009, 469, p 445–450

    Article  Google Scholar 

  69. A. Deschamps, G. Fribourg, Y. Bréachet, J.L. Chemin, and C.R. Hutchinson, In Situ Evaluation of Dynamic Precipitation During Plastic Straining of an Al–Zn–Mg–Cu Alloy, Acta Mater., 2012, 60, p 1905–1916

    Article  Google Scholar 

  70. C.C. Kammerer, N.S. Kulkarni, B. Warmack, and Y.H. Sohn, Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc, J. Phase Equilibria Diffus., 2016, 37, p 65–74

    Article  Google Scholar 

  71. M. Vlach, V. Kodetová, B. Smola, J. Čízek, T. Kekule, M. Cieslar, H. Kudrnová, L. Bajtošová, M. Leibner, and I. Procházka, Characterization of Phase Development in Commercial Al-Zn-Mg(-Mn, Fe) Alloy with and Without Sc,Zr-Addition, Kovove Mater., 2018, 56, p 367–377

    Google Scholar 

  72. E. Donoso, Calorimetric Study of the Dissolution of Guinier-Preston Zones and η’ Phase in Al-4.5at%Zn-1.75at%Mg, Mater. Sci. Eng., 1985, 74, p 39–46

    Article  Google Scholar 

  73. C. García-Cordovilla and E. Louis, Kinetics of Retrogression in Al-Zn-Mg-(Cu) Alloys, Metall. Trans. A, 1990, 21A, p 2277–2280

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial support through the Discovery Grant program. Further, the first author would like to express his gratitude to Professor Hugh Shercliff (Senior Lecturer, Department of Engineering, University of Cambridge, Cambridge, UK) and Dr. Marjan Rajabi (Assistant Professor, Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology, Tehran, Iran) for their invaluable comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Reza Ghiaasiaan.

Ethics declarations

Conflict of interest

Hereby, both authors of this manuscript solemnly state that there has not been any conflict of interests involved in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiaasiaan, S.R., Shalchi Amirkhiz, B. & Shankar, S. High-Resolution Electron Microscopy and Kinetic Studies of Precipitation Hardening Reactions in Cast Al-5.8Zn-2.2Mg-2.5Cu. J. of Materi Eng and Perform 28, 4630–4646 (2019). https://doi.org/10.1007/s11665-019-04219-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04219-4

Keywords

Navigation