Skip to main content
Log in

Effect of Test Temperature and Strain Rate on Dynamic Mechanical Behavior of Aluminum Alloy 2519A

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dynamic mechanical behavior of aluminum alloy 2519A-T9I6 has been investigated by a split Hopkinson bar at temperature range from 298 to 523 K and at strain rates of from 103 to 5 × 103 s−1 in this study. The results show that both the strain rate and test temperature have a significant effect on the dynamic behavior and microstructure evolution of aluminum alloy 2519A-T9I6. Under similar strain rate, the strengthening effect of strain rate decreases with the increase in the test temperature. Moreover, the dynamic yield strength at above 423 K drops sharply at the strain rate of about 5000 s−1, which is attributed to the flow softening caused by decomposition of θ′ precipitates at high strain rate and high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.A. Starke, Jr, and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2), p 131–172

    Article  Google Scholar 

  2. J.J. Fisher, Jr., L.S. Kramer, and J.R. Pickens, Aluminum Alloy 2519 in Military Vehicles, Adv. Mater. Processes, 2002, 160(9), p 43–46

    CAS  Google Scholar 

  3. L.S. Kramer, T.P. Blair, S.D. Blough, J.J. Fisher, Jr., and J.R. Pickens, Stress-corrosion Cracking Susceptibility of Various Product Forms of Aluminum Alloy 2519, J. Mater. Eng. Perform., 2002, 11(6), p 645–650

    Article  CAS  Google Scholar 

  4. G. Gu, L.Y. Ye, X.M. Zhang, H.C. Jiang, D.X. Sun, and P. Zhang, Effects of Interrupted Ageing on Microstructure and Mechanical Properties of 2519A Aluminum Alloy, Chin. J. Nonferr. Met., 2013, 23(8), p 2098–2103

    CAS  Google Scholar 

  5. L.Y. Ye, G. Gu, X.M. Zhang, D.X. Sun, H.C. Jiang, and P. Zhang, Dynamic Properties Evaluation of 2519A Aluminum Alloy Processed by Interrupted Aging, Mater. Sci. Eng. A, 2014, 590(1), p 97–100

    Article  CAS  Google Scholar 

  6. G. Gu, L.Y. Ye, H.C. Jiang, D.X. Sun, P. Zhang, and X.M. Zhang, Effects of T9I6 Thermo-mechanical Process on Microstructure, Mechanical Properties and Ballistic Resistance of 2519A Aluminum Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24(7), p 2295–2300

    Article  CAS  Google Scholar 

  7. D.X. Sun, X.M. Zhang, L.Y. Ye, G. Gu, H.C. Jiang, and G.X. Hui, Evolution of θ′ Precipitate in Aluminum Alloy 2519A Impacted by Split Hopkinson Bar, Mater. Sci. Eng. A, 2015, 620, p 241–245

    Article  Google Scholar 

  8. C. Perrin and W.M. Rainforth, The Coarsening of θ Precipitates in an Al-4WT% Cu Alloy as a Result of Frictional Heating, Scr. Mater., 1996, 34(6), p 877–881

    Article  CAS  Google Scholar 

  9. Z.G. Gao, X.M. Zhang, Y.S. Zhao, M.A. Chen, and H.J. Li, The Effect of Strain Rate on the Microstructure of 2519A Aluminium Alloy Plate Impacted at 573K, J. Alloy. Compd., 2009, 481(1–2), p 422–426

    Article  CAS  Google Scholar 

  10. Z.G. Gao, X.M. Zhang, and M.A. Chen, Influence of Strain Rate on the Precipitate Microstructure in Impacted Aluminum Alloy, Scr. Mater., 2008, 59(9), p 983–986

    Article  CAS  Google Scholar 

  11. W.H. Liu, Z.T. He, Y.Q. Chen, and S.W. Tang, Dynamic Mechanical Properties and Constitutive Equations of 2519A Aluminum Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24(7), p 2179–2186

    Article  CAS  Google Scholar 

  12. A. Azimi, G.M. Owolabi, H. Fallahdoost, N. Kumar, and G. Warner, High Strain Rate Behavior of Ultrafine Grained AA2519 Processed via Multi Axial Cryogenic Forging, Metals, 2019, 9, p 115

    Article  Google Scholar 

  13. A. Azimi, G.M. Owolabi, H. Fallahdoost, N. Kumar, and G. Warner, Dynamic Failure Investigation in Ultrafine Grained AA2219: Mechanical and Microstructural Analysis, Metals and Materials International, 2019, p 1–12

  14. A.T. Olasumboye, G.M. Owolabi, A.G. Odeshi, N. Yilmaz, and A. Zeytinci, Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression, J. Dyn. Behav. Mater., 2018, 4(1), p 1–11

    Article  Google Scholar 

  15. G.M. Owolabi, D.T. Bolling, A.G. Odeshi, H.A. Whitworth, N. Yilmaz, and A. Zeytinci, The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading, J. Mater. Eng. Perform., 2017, 26(12), p 1–10

    Article  Google Scholar 

  16. G.M. Owolabi, D.T. Bolling, A.A. Tiamiyu, R. Abu, A.G. Odeshi, and H.A. Whitworth, Shear Strain Localization in AA 2219-T8 Aluminum Alloy at High Strain Rates, Mater. Sci. Eng. A, 2016, 655(2), p 212–220

    Article  CAS  Google Scholar 

  17. D.X. Sun, X.M. Zhang, L.Y. Ye, X.H. Gui, H.C. Jiang, and G. Gu, Comparative Study of the Dynamic Mechanical Behavior of Aluminum Alloy 2519A and 7039, Mater. Sci. Eng. A, 2015, 640, p 165–170

    Article  CAS  Google Scholar 

  18. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen, Atomistic Calculations of Interfacial Energies, Nucleus Shape and Size of θ′ Precipitates in Al–Cu Alloys, Acta Mater., 2006, 54(18), p 4699–4707

    Article  CAS  Google Scholar 

  19. Y. Feng, Z.Z. Zhu, F.Q. Zu, S.S. Hu, and P. Yi, Strain Rate Effects on the Compressive Property and the Energy-absorbing Capacity of Aluminum Alloy Foams, Mater. Charact., 2001, 47(5), p 417–422

    Article  Google Scholar 

  20. R. Saha and R.K. Ray, Microstructural and Textural Changes in a Severely Cold Rolled Boron-Added Interstitial-free Steel, Scr. Mater., 2007, 57(9), p 841–844

    Article  CAS  Google Scholar 

  21. D.O. Ovono, I. Guillot, and D. Massinon, Determination of the Activation Energy in a Cast Aluminium Alloy by TEM and DSC, J. Alloy. Compd., 2007, 432(1), p 241–246

    Article  Google Scholar 

  22. H. Fara and R.W. Balluffi, Analysis of Diffusion in Media Undergoing Deformation, J. Appl. Phys., 1958, 29(7), p 1133–1134

    Article  CAS  Google Scholar 

  23. G.R. Love, Dislocation Pipe Diffusion, Acta Metall., 1964, 12(6), p 731–737

    Article  Google Scholar 

  24. E.W. Hart, On the Role of Dislocations in Bulk Diffusion, Acta Metall., 1957, 5(10), p 597–597

    Article  CAS  Google Scholar 

  25. A.W. Zhu, J. Chen, and E.A. Starke, Jr., Precipitation Strengthening of Stress-aged Al–xCu Alloys, Acta Mater., 2000, 48(9), p 2239–2246

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Key Research and Development Program of China (No. 2016YFB0300901), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Ly., Dong, Y., Zhang, Y. et al. Effect of Test Temperature and Strain Rate on Dynamic Mechanical Behavior of Aluminum Alloy 2519A. J. of Materi Eng and Perform 28, 4964–4971 (2019). https://doi.org/10.1007/s11665-019-04216-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04216-7

Keywords

Navigation