Skip to main content
Log in

Comparison of Experimental Measurements of Thermal Conductivity of Fe2O3 Nanofluids Against Standard Theoretical Models and Artificial Neural Network Approach

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 23 August 2021

This article has been updated

Abstract

In the present work, the practicability of Fe2O3 nanofluids for heat transfer applications has been examined. Nanofluids performance, in terms of modulation of thermal conductivity, has been investigated with increasing concentration of Fe2O3 nanoparticles in water and ethylene glycol base fluids at 10, 20, 30, 40, 50, 60 and 70 °C. Fe2O3 nanoparticles have been synthesized using the wet chemical method and characterized using TEM, SEM, XRD and UV–Vis. The characterization results revealed a face-centered cubic structure having alpha phase and particle size in the range of 40-55 nm for the synthesized Fe2O3 nanoparticles. Thermal conductivity measurement results show increases in thermal conductivity with the increase in concentration and temperature of nanofluids. 16.45 and 19.76% enhancement in thermal conductivity have been observed for Fe2O3–water and Fe2O3–ethylene glycol nanofluids of 2 vol.% at 70 °C compared to water and ethylene glycol base fluids at 10 °C, respectively. Results of the ANN approach are in good agreement with experimental results, and H–C model gives better predictions compared to other standard models. The study gives clear insights into improved heat transfer performance by material engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. T.K. Hong, H.S. Yang, and C.J. Choi, Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., 2005, 97(6), p 1–4

    Google Scholar 

  2. K. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, 88(3), p 31901

    Article  Google Scholar 

  3. H.E. Patel, S.K. Das, T. Sundararagan, A.S. Nair, B. Geoge, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticles Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., 2003, 83, p 2931–2933

    Article  CAS  Google Scholar 

  4. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, 78(6), p 718–720

    Article  CAS  Google Scholar 

  5. X. Wang, X. Xu, and S.U.S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., 1999, 13(4), p 474–480

    Article  CAS  Google Scholar 

  6. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of 7-Al2O3, SiO2, and TiO2 Ultra-Fine Particles), Netsu Bus-Sei (Japan), 1993, 7(4), p 227–233

    Article  CAS  Google Scholar 

  7. S. Lee, S.U.S. Choi, S. Li, and J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., 1999, 121, p 280–289

    Article  CAS  Google Scholar 

  8. S.M.S. Murshed, K.C. Leong, and C. Yang, Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids, Int. J. Therm. Sci., 2005, 44(4), p 367–373

    Article  CAS  Google Scholar 

  9. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56–57

    Article  CAS  Google Scholar 

  10. M.S. Liu, M. Ching, L. Cheng, I.T. Huang, and C.C. Wang, Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids, Int. Commun. Heat Mass, 2005, 32(9), p 1202–1210

    Article  CAS  Google Scholar 

  11. J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed, Vol 435, Claredon Press, Oxford, 1904

    Google Scholar 

  12. W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids, a Renovated Maxwell Model, J. Nanopart. Res., 2003, 5, p 167–171

    Article  CAS  Google Scholar 

  13. D.A.G. Bruggeman, Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen I. Dielektrizitatskonstanten and Leitfanigkeitender Mischkorper aus isotropen Substanzen, Ann. Phys., 1935, 24, p 636–679

    Article  CAS  Google Scholar 

  14. R.L. Hamilton and O.K. Crosser, Thermal Conductivity of Heterogeneous Two Component Systems, Ind. Eng. Chem. Fundam., 1962, 1(3), p 187–191

    Article  CAS  Google Scholar 

  15. K. Verma, S. Kumar, A. Upadhyay, and R. Singh, Prediction of Thermal Conductivity of Nanofluids Containing Metal Oxide Nanoparticles, Adv. Sci. Eng. Med., 2015, 7, p 378–384

    Article  CAS  Google Scholar 

  16. Y. Xuan, Q. Li, and W. Hu, Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE J., 2003, 49, p 1038–1043

    Article  CAS  Google Scholar 

  17. J. Koo and C. Kleinstreuer, A New Thermal Conductivity Model for Nanofluids, J. Nanopart. Res., 2004, 6, p 577–588

    Article  Google Scholar 

  18. K. Verma, M. Dabas, A. Upadhyay, and R. Singh, Effective Thermal Conductivity of Lithium Multipurpose Grease Filled with Metal Particles, J. Reinf. Plast. Compos., 2014, 33(19), p 1794–1801

    Article  Google Scholar 

  19. H. Kurt and M. Kayfeci, Prediction of Thermal Conductivity of Ethylene Glycol-Water Solutions by Using Artificial Neural Networks, Appl. Energy, 2006, 86, p 2244–2248

    Article  Google Scholar 

  20. J.Z. Liang and G.S. Liu, A New Heat Transfer Model of Inorganic Particulate-Filled Polymer Composites, J. Mater. Sci., 2009, 44, p 4715–4720

    Article  CAS  Google Scholar 

  21. R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, and R. Singh, Synthesis, Characterization, Thermal Conductivity and Sensitivity of CuO Nanofluids, Appl. Therm. Eng., 2016, 102, p 1024–1036

    Article  CAS  Google Scholar 

  22. G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental Study of Thermo-Physical Properties of Nanofluids Based on γ-Fe2O3 Nanoparticles for Heat Transfer Applications, Heat Transfer Eng., 2017, 38(17), p 1496–1505

    Article  CAS  Google Scholar 

  23. R. Agarwal, K. Verma, N.K. Agrawal, and R. Singh, Sensitivity of Thermal Conductivity for Al2O3 Nanofluids, Exp. Thermal Fluid Sci., 2017, 80(1), p 19–26

    Article  CAS  Google Scholar 

  24. S.Z. Guo, Y. Li, J.S. Jiang, and H.Q. Xie, Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements, Nanoscale Res. Lett., 2010, 5(7), p 1222

    Article  CAS  Google Scholar 

  25. E. Ahmadloo and S. Azizi, Prediction of Thermal Conductivity of Various Nanofluids Using Artificial Neural Network, Int. Commun. Heat Mass Transf., 2016, 74(1), p 69–75

    Article  CAS  Google Scholar 

  26. L. Motte, What are the Current Advances Regarding Iron Oxide Nanoparticles for Nanomedicine?, J. Bioanal. Biomed., 2012, 4(6), p 1–2

    Article  Google Scholar 

  27. C. Montferrand, Y. Lalatonne, D. Bonnin, L. Motte, and P. Monod, Non Linear Magnetic Behavior Around Zero Field of an Assembly of Superparamagnetic Nanoparticles, Analyst, 2012, 137(1), p 2304–2308

    Article  Google Scholar 

  28. W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J. Nanopart. Res., 2003, 5(1), p 167–171

    Article  CAS  Google Scholar 

  29. C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-ray Reflectivity Study, Phys. B, 2000, 283(1), p 27–31

    Article  CAS  Google Scholar 

  30. N. Kumar and S.S. Sonawane, Experimental Study of Fe2O3/Water and Fe2O3/Ethylene Glycol Nanofluid Heat Transfer Enhancement in a Shell and Tube Heat Exchanger, Int. Commun. Heat Mass, 2016, 78(1), p 277–284

    Article  CAS  Google Scholar 

  31. N. Zouli, I.A. Said, and M. Al-Dahhan, Enhancement of Thermal Conductivity and Local Heat Transfer Coefficients Using Fe2O3/Water Nanofluid for Improved Thermal Desalination Processes, J. Nanofluids, 2019, 8(5), p 1103–1122

    Article  Google Scholar 

  32. S.Z. Guo, Y. Li, J.S. Jiang, and H.Q. Xie, Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements, Nanoscale Res. Lett., 2010, 5(1), p 1222–1227

    Article  CAS  Google Scholar 

  33. L. Colla, L. Fedele, M. Scattolini, and S. Bobbo, Water-Based Fe2O3 Nanofluid Characterization: Thermal Conductivity and Viscosity Measurements and Correlation, Adv. Mech. Eng., 2012, 4(1), p 1–8

    Google Scholar 

  34. G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental Study of Thermo-Physical Properties of Nanofluids Based on γ- Fe2O3 Nanoparticles for Heat Transfer Applications, Heat Transf. Eng., 2017, 38(17), p 1496–1505

    Article  CAS  Google Scholar 

  35. I. Nurdin, M.R. Johan, and B.C. Ang, Experimental Investigation on Thermal Conductivity and Viscosity of Maghemite (γ–Fe2O3) Water-based Nanofluids, IOP Conf. Ser. Mater. Sci. Eng., 2018, 334(1), p 1–7

    Google Scholar 

Download references

Acknowledgments

Research Associateship by Council of Scientific and Industrial Research (CSIR) to Ravi Agarwal and Senior Research Fellowship by University Grant Commission (conducted by Council of Scientific and Industrial Research) to Kamalesh Verma are gratefully acknowledged. Authors are also thankful to the UR-DBT-IPLS (BUILDER) of Centre for Converging Technologies, University of Rajasthan, for allowing using their facilities. KD2 Thermal Properties Analyzer provided by Dr. R. K. Duchaniya (Department of Metallurgical and Material Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan) is also gratefully acknowledged. We thank Keiron O’Shea from Aberystwyth University, UK, for improving the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R., Verma, K., Agrawal, N.K. et al. Comparison of Experimental Measurements of Thermal Conductivity of Fe2O3 Nanofluids Against Standard Theoretical Models and Artificial Neural Network Approach. J. of Materi Eng and Perform 28, 4602–4609 (2019). https://doi.org/10.1007/s11665-019-04202-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04202-z

Keywords

Navigation