Skip to main content
Log in

Effect of Carbon Nanotube Concentration on the Corrosion Behavior of Electroless Ni-B-CNT Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Ni-B-CNT composite was deposited on AISI 4140 steel using different concentrations of CNTs ranging from 0.2 to 1 gr/lit in an electroless bath. The phase analysis and surface morphology of the samples were characterized using x-ray diffraction and FESEM. The corrosion behavior of the coated samples was investigated in a 3.5 wt.% NaCl solution through potentiodynamic polarization, EIS, and electrochemical noise (EN) analyses. The corroded surface of the samples was further analyzed via FESEM observation after 10 days of immersion in corrosive medium. It was found that although adding 0.2 gr/lit CNT in electroless solution improves corrosion resistance, increasing CNT concentration from 0.2 up to 1 gr/lit increases the corrosion rate. The FESEM observations and EN results imply that the formation of micro-galvanic cells in samples with high concentration of CNTs leads to nucleation and growth of the pits. The results revealed that no passive layer was formed on the surface of the Ni-B sample, and the corrosion occurred through ionic diffusion into the cracks and crevices. The results of potentiodynamic test show that adding CNTs into electroless bath facilitates the formation of passive layer. However, results of EN test imply that increasing CNT concentration causes repetitive breakdown and recovery of passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E. Georgiza, V. Gouda, and P. Vassiliou, Production and Properties of Composite Electroless Ni-B-SiC Coatings, Surf. Coat. Technol., 2017, 325, p 46–51

    Article  Google Scholar 

  2. A. Mukhopadhyay, T.K. Barman, and P. Sahoo, Tribological Behavior of Sodium Borohydride Reduced Electroless Nickel Alloy Coatings at Room and Elevated Temperatures, Surf. Coat. Technol., 2017, 321, p 464–476

    Article  Google Scholar 

  3. S. Shibli and K. Chinchu, Development and Electrochemical Characterization of Ni-P Coated Tungsten Incorporated Electroless Nickel Coatings, Mater. Chem. Phys., 2016, 178, p 21–30

    Article  Google Scholar 

  4. V. Vitry and L. Bonin, Formation and Characterization of Multilayers Borohydride and Hypophosphite Reduced Electroless Nickel Deposits, Electrochim. Acta, 2017, 243, p 7–17

    Article  Google Scholar 

  5. V. Vitry and L. Bonin, Increase of Boron Content in Electroless Nickel-Boron Coating by Modification of Plating Conditions, Surf. Coat. Technol., 2017, 311, p 164–171

    Article  Google Scholar 

  6. L. Bonin, V. Vitry, and F. Delaunois, The Tin Stabilization Effect on the Microstructure, Corrosion and Wear Resistance of Electroless NiB Coatings, Surf. Coat. Technol., 2019, 357, p 353–363

    Article  Google Scholar 

  7. L. Bonin, V. Vitry, and F. Delaunois, Corrosion Behaviour of Electroless High Boron-Mid Phosphorous Nickel Duplex Coatings in the as-Plated and Heat-Treated States in NaCl, H 2 SO 4, NaOH and Na 2 SO 4 Media, Mater. Chem. Phys., 2018, 208, p 77–84

    Article  Google Scholar 

  8. Z.A. Hamid, H. Hassan, and A. Attyia, Influence of Deposition Temperature and Heat Treatment on the Performance of Electroless Ni-B Films, Surf. Coat. Technol., 2010, 205, p 2348–2354

    Article  Google Scholar 

  9. K. Krishnaveni, T.S. Narayanan, and S. Seshadri, Corrosion Resistance of Electrodeposited Ni-B and Ni-B-Si3N4 Composite Coatings, J. Alloy Compd., 2009, 480, p 765–770

    Article  Google Scholar 

  10. M. Anik, E. Körpe, and E. Şen, Effect of Coating Bath Composition on the Properties of Electroless Nickel–Boron Films, Surf. Coat. Technol., 2008, 202, p 1718–1727

    Article  Google Scholar 

  11. V. Vitry, A.-F. Kanta, and F. Delaunois, Application of Nitriding to Electroless Nickel–Boron Coatings: Chemical and Structural Effects; Mechanical Characterization; Corrosion Resistance, Mater. Des., 2012, 39, p 269–278

    Article  Google Scholar 

  12. S.R. Ardakani, A. Afshar, S. Sadreddini, and A. Ghanbari, Characterization of Ni-P-SiO2-Al2O3 Nano-Composite Coatings on Aluminum Substrate, Mater. Chem. Phys., 2017, 189, p 207–214

    Article  Google Scholar 

  13. K.A. Kumar, G.P. Kalaignan, and V. Muralidharan, Direct and Pulse Current Electrodeposition of Ni-W-TiO2 Nanocomposite Coatings, Ceram. Int., 2013, 39, p 2827–2834

    Article  Google Scholar 

  14. C. Sun, X. Liu, C. Zhou, C. Wang, and H. Cao, Preparation and Wear Properties of Magnetic Assisted Pulse Electrodeposited Ni-SiC Nanocoatings, Ceram. Int., 2019, 45, p 1348–1355

    Article  Google Scholar 

  15. T. He, Y. He, H. Li, Z. Su, Y. Fan, and Z. He, Fabrication of Ni-W-B4C Composite Coatings and Evaluation of its Micro-Hardness and Corrosion Resistance Properties, Ceram. Int., 2018, 44, p 9188–9193

    Article  Google Scholar 

  16. Y. Wang, Q. Zhou, K. Li, Q. Zhong, and Q.B. Bui, Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of its Hardness and Corrosion Resistance, Ceram. Int., 2015, 41, p 79–84

    Article  Google Scholar 

  17. J. Tian, X. Liu, J. Wang, X. Wang, and Y. Yin, Electrochemical Anticorrosion Behaviors of the Electroless Deposited Ni-P and Ni-P-PTFE Coatings in Sterilized and Unsterilized Seawater, Mater. Chem. Phys., 2010, 124, p 751–759

    Article  Google Scholar 

  18. B. Li and W. Zhang, Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni-W/Si3N4 Nanocomposite Coating, Ceram. Int., 2018, 44, p 19907–19918

    Article  Google Scholar 

  19. M. Rashad, F. Pan, A. Tang, M. Asif, and M. Aamir, Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-Walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium, J. Alloy. Compd., 2014, 603, p 111–118

    Article  Google Scholar 

  20. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R.O. Raji, and C. Kittrell, A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material, Nat. Commun., 2012, 3, p 1225

    Article  Google Scholar 

  21. S. Yazdani, R. Tima, and F. Mahboubi, Investigation of Wear Behavior of as-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration, Appl. Surf. Sci., 2018, 457, p 942–955

    Article  Google Scholar 

  22. M. Zhou, Y. Mai, H. Ling, F. Chen, W. Lian, and X. Jie, Electrodeposition of CNTs/Copper Composite Coatings with Enhanced Tribological Performance from a Low Concentration CNTs Colloidal Solution, Mater. Res. Bull., 2018, 97, p 537–543

    Article  Google Scholar 

  23. A.J. Albaaji, E.G. Castle, M.J. Reece, J.P. Hall, and S.L. Evans, Effect of Ball-Milling Time on Mechanical and Magnetic Properties of Carbon Nanotube Reinforced FeCo Alloy Composites, Mater. Des., 2017, 122, p 296–306

    Article  Google Scholar 

  24. Y.-C. Chiang, W.-H. Lin, and Y.-C. Chang, The Influence of Treatment Duration on Multi-Walled Carbon Nanotubes Functionalized by H2SO4/HNO3 Oxidation, Appl. Surf. Sci., 2011, 257, p 2401–2410

    Article  Google Scholar 

  25. J.-H. Ahn, H.-S. Shin, Y.-J. Kim, and H. Chung, Structural Modification of Carbon Nanotubes by Various Ball Milling, J. Alloy Compd., 2007, 434, p 428–432

    Article  Google Scholar 

  26. K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments, Carbon, 2011, 49, p 24–36

    Article  Google Scholar 

  27. L. Vaisman, H.D. Wagner, and G. Marom, The Role of Surfactants in Dispersion of Carbon Nanotubes, Adv. Coll. Interface. Sci., 2006, 128, p 37–46

    Article  Google Scholar 

  28. H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew, Norwich, 2012

    Google Scholar 

  29. Y. Shao, G. Yin, J. Zhang, and Y. Gao, Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution, Electrochim. Acta, 2006, 51, p 5853–5857

    Article  Google Scholar 

  30. M. Alishahi, S.M. Monirvaghefi, A. Saatchi, and S.M. Hosseini, The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni-P-CNT Composite Coating, Appl. Surf. Sci., 2012, 258, p 2439–2446

    Article  Google Scholar 

  31. X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, and G. Yi, Corrosion Behavior of Carbon Nanotubes–Ni Composite Coating, Surf. Coat. Technol., 2005, 191, p 351–356

    Article  Google Scholar 

  32. B. Praveen and T. Venkatesha, Electrodeposition and Properties of Zn-Ni-CNT Composite Coatings, J. Alloy. Compd., 2009, 482, p 53–57

    Article  Google Scholar 

  33. Z. Yang, H. Xu, Y.-L. Shi, M.-K. Li, Y. Huang, and H.-L. Li, The Fabrication and Corrosion Behavior of Electroless Ni-P-Carbon Nanotube Composite Coatings, Mater. Res. Bull., 2005, 40, p 1001–1009

    Article  Google Scholar 

  34. A. Zarebidaki and S.-R. Allahkaram, Effect of Surfactant on the Fabrication and Characterization of Ni-P-CNT Composite Coatings, J. Alloy. Compd., 2011, 509, p 1836–1840

    Article  Google Scholar 

  35. J. Thakare, R. Mulik, and M. Mahapatra, Effect of Carbon Nanotubes and Aluminum Oxide on the Properties of a Plasma Sprayed Thermal Barrier Coating, Ceram. Int., 2018, 44, p 438–451

    Article  Google Scholar 

  36. J. Thakare, R. Mulik, and M. Mahapatra, Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina-CNT Composite Coating in Na2SO4-60% V2O5 Molten Salt Environment, Ceram. Int., 2018, 44, p 21533–21545

    Article  Google Scholar 

  37. H. Fukuda, J.A. Szpunar, K. Kondoh, and R. Chromik, The Influence of Carbon Nanotubes on the Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 3917–3923

    Article  Google Scholar 

  38. M.C. Turhan, Q. Li, H. Jha, R.F. Singer, and S. Virtanen, Corrosion Behaviour of Multiwall Carbon Nanotube/Magnesium Composites in 3.5% NaCl, Electrochim. Acta, 2011, 56, p 7141–7148

    Article  Google Scholar 

  39. N.N. Aung, W. Zhou, C.S. Goh, S.M.L. Nai, and J. Wei, Effect of Carbon Nanotubes on Corrosion of Mg-CNT Composites, Corros. Sci., 2010, 52, p 1551–1553

    Article  Google Scholar 

  40. Q.-L. Rao, G. Bi, Q.-H. Lu, H.-W. Wang, and X.-L. Fan, Microstructure Evolution of Electroless Ni-B Film During its Depositing Process, Appl. Surf. Sci., 2005, 240, p 28–33

    Article  Google Scholar 

  41. K. Lee, D. Chang, and S. Kwon, Properties of Electrodeposited Nanocrystalline Ni-B Alloy Films, Electrochim. Acta, 2005, 50, p 4538–4543

    Article  Google Scholar 

  42. L. Gou, P.-G. Liu, D. Liu, C.-Y. Wang, H.-Y. Lei, Z.-Y. Li, X.-Y. Fan, and D.-L. Li, Rational Synthesis of Ni 3 (HCOO) 6/CNT Ellipsoids with Enhanced Lithium Storage Performance: Inspired by the Time Evolution of the Growth Process of a Nickel Formate Framework, Dalton Trans., 2017, 46, p 6473–6482

    Article  Google Scholar 

  43. B. Praveen, T. Venkatesha, Y.A. Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes–Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5842

    Article  Google Scholar 

  44. Y.N. Bekish, S. Poznyak, L. Tsybulskaya, and T. Gaevskaya, Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 2010, 55, p 2223–2231

    Article  Google Scholar 

  45. W. Wei, Y. Tao, W. Lv, F.-Y. Su, L. Ke, J. Li, D.-W. Wang, B. Li, F. Kang, and Q.-H. Yang, Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts, Sci. Rep., 2014, 4, p 6289

    Article  Google Scholar 

  46. F. Growcock and R. Jasinski, Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid, J. Electrochem. Soc., 1989, 136, p 2310–2314

    Article  Google Scholar 

  47. H. Ashassi-Sorkhabi and M. Es, Corrosion Resistance Enhancement of Electroless Ni-P Coating by Incorporation of Ultrasonically Dispersed Diamond Nanoparticles, Corros. Sci., 2013, 77, p 185–193

    Article  Google Scholar 

  48. H.S. Klapper, J. Goellner, and A. Heyn, The Influence of the Cathodic Process on the Interpretation of Electrochemical Noise Signals Arising from Pitting Corrosion of Stainless Steels, Corros. Sci., 2010, 52, p 1362–1372

    Article  Google Scholar 

  49. S. Girija, U.K. Mudali, V. Raju, R. Dayal, H. Khatak, and B. Raj, Determination of Corrosion Types for AISI, type 304L Stainless Steel Using Electrochemical Noise Method, Mater. Sci. Eng. A, 2005, 407, p 188–195

    Article  Google Scholar 

  50. B. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279

    Article  Google Scholar 

  51. C.-J. Park and H.-S. Kwon, Electrochemical Noise Analysis of Localized Corrosion of Duplex Stainless Steel Aged at 475 °C, Mater. Chem. Phys., 2005, 91, p 355–360

    Article  Google Scholar 

  52. A. Chen, F. Cao, X. Liao, W. Liu, L. Zheng, J. Zhang, and C. Cao, Study of Pitting Corrosion on Mild Steel During Wet–Dry Cycles by Electrochemical Noise Analysis Based on Chaos Theory, Corros. Sci., 2013, 66, p 183–195

    Article  Google Scholar 

  53. Z. Rajabalizadeh, D. Seifzadeh, A. Habibi-Yangjeh, T.M. Gundoshmian, and S. Nezamdoust, Electrochemical Noise Analysis to Examine the Corrosion Behavior of Ni-P Deposit on AM60B Alloy Plated by Zr Pretreatment, Surf. Coat. Technol., 2018, 346, p 29–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yazdani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, S., Mahboubi, F., Tima, R. et al. Effect of Carbon Nanotube Concentration on the Corrosion Behavior of Electroless Ni-B-CNT Coating. J. of Materi Eng and Perform 28, 3446–3459 (2019). https://doi.org/10.1007/s11665-019-04155-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04155-3

Keywords

Navigation