Skip to main content
Log in

Fabrication and Characterization of A5083-WC-Al2O3 Surface Composite by Friction Stir Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, WC-Al2O3 ceramic composite was incorporated into Al5083 to produce a surface composite by friction stir processing (FSP), and the microstructure, hardness and wear properties of Al5083-WC-Al2O3 surface composite were evaluated. Optical microscopy of FSPed samples showed grain refinement in the stir zone. The addition of WC-Al2O3 particles as well as increase in FSP pass number had a considerable effect on grain refinement, and the grain size of Al5083 base metal of 36 µm reduced to 11 µm for Al5083-WC-Al2O3 surface composite after four passes. The SEM observation of the surface composite revealed that the WC-Al2O3 particles distributed homogenously in the matrix and by increasing the FSP passes, the initial agglomerates of mechanochemically synthesized WC-Al2O3 powders could be fractured. Microhardness evaluation showed a substantial improvement by adding WC-Al2O3 particles and increase in FSP pass number. The maximum microhardness value of 101 HV belonged to surface composite after four passes, while the microhardness of the base metal was 65 HV. Wear test results revealed enhanced tribological behavior with a similar trend of microhardness values. Scanning electron microscopy tests revealed both adhesive and abrasive wear mechanisms on the surface of the wear test specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Polmear, D.S. John, J.F. Nie, and M. Qian, Light Alloys: Metallurgy of the Light Metals, 5th ed., Butterworth-Heinemann, Chennai, 2017

    Google Scholar 

  2. F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Manuf. Technol. Aerosp. Struct. Mater., 2006, https://doi.org/10.1016/b978-185617495-4/50002-0

    Google Scholar 

  3. M. Akbari, M.H. Shojaeefard, P. Asadi, and A. Khalkhali, Wear and Mechanical Properties of Surface Hybrid Metal Matrix Composites on Al-Si Aluminum Alloys Fabricated by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2017, 233, p 790–799. https://doi.org/10.1177/1464420717702413

    Google Scholar 

  4. M. Tavoosi, S. Arjmand, and B. Adelimoghaddam, Surface Alloying of Commercially Pure Titanium with Aluminium and Nitrogen Using GTAW Processing, Surf. Coat. Technol., 2017, 311, p 314–320. https://doi.org/10.1016/j.surfcoat.2016.12.115

    Article  Google Scholar 

  5. M. Tavoosi and S. Arjmand, In Situ Formation of Al/Al3Ti Composite Coating on Pure Ti Surface by TIG Surfacing Process, Surf. Interfaces, 2017, 8, p 1–7. https://doi.org/10.1016/j.surfin.2017.04.002

    Article  Google Scholar 

  6. F. Ghadami, M. Heydarzadeh Sohi, and S. Ghadami, Effect of TIG Surface Melting on Structure and Wear Properties of Air Plasma-Sprayed WC-Co Coatings, Surf. Coat. Technol., 2015, 261, p 108–113. https://doi.org/10.1016/j.surfcoat.2014.11.050

    Article  Google Scholar 

  7. V. Kishan, A. Devaraju, and K.P. Lakshmi, Tribological Properties of Nano TiB2 Particle Reinforced 6061-T6 Aluminum Alloy Surface Composites via Friction Stir Processing, Mater. Today Proc., 2018, 5(1, Part 1), p 1615–1619. https://doi.org/10.1016/j.matpr.2017.11.254

    Article  Google Scholar 

  8. K.A. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Giménez, and L. Cabedo, Comparison of Flame Sprayed Al2O3/TiO2 Coatings: Their Microstructure, Mechanical Properties and Tribology Behavior, Surf. Coat. Technol., 2006, 201(3-4), p 1436–1443

    Article  Google Scholar 

  9. D. Chaliampalias, S. Andronis, N. Pliatsikas, E. Pavlidou, D. Tsipas, S. Skolianos, K. Chrissafis, G. Stergioudis, P. Patsalas, and G. Vourlias, Formation and Oxidation Resistance of Al/Ni Coatings on Low Carbon Steel by Flame Spray, Surf. Coat. Technol., 2014, 255, p 62–68

    Article  Google Scholar 

  10. N. Kahraman and B. Gülenç, Abrasive Wear Behaviour of Powder Flame Sprayed Coatings on Steel Substrates, Mater. Des., 2002, 23(8), p 721–725. https://doi.org/10.1016/S0261-3069(02)00075-4

    Article  Google Scholar 

  11. A. Kurt, I. Uygur, and E. Cete, Surface Modification of Aluminium by Friction Stir Processing, J. Mater. Process. Technol., 2011, 211(3), p 313–317. https://doi.org/10.1016/j.jmatprotec.2010.09.020

    Article  Google Scholar 

  12. H.S. Arora, H. Singh, and B.K. Dhindaw, Composite Fabrication Using Friction Stir Processing—A Review, Int. J. Adv. Manuf. Technol., 2012, 61(9–12), p 1043–1055

    Article  Google Scholar 

  13. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  14. V.K.S. Jain, P.M. Muhammed, S. Muthukumaran, and S.P.K. Babu, Microstructure, Mechanical and Sliding Wear Behavior of AA5083-B4C/SiC/TiC Surface Composites Fabricated Using Friction Stir Processing, Trans. Indian Inst. Met., 2018, 71(6), p 1519–1529. https://doi.org/10.1007/s12666-018-1287-y

    Article  Google Scholar 

  15. N. Yuvaraj and S. Aravindan, Wear Characteristics of Al5083 Surface Hybrid Nano-Composites by Friction Stir Processing, Trans. Indian Inst. Met., 2017, 70(4), p 1111–1129

    Article  Google Scholar 

  16. D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24(3), p 1116–1124. https://doi.org/10.1007/s11665-015-1404-6

    Article  Google Scholar 

  17. H.C. Madhu, P. Ajay Kumar, C.S. Perugu, and S.V. Kailas, Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO2 Nanocomposite, J. Mater. Eng. Perform., 2018, https://doi.org/10.1007/s11665-018-3188-y

    Google Scholar 

  18. G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies-Processes, Parameters, Microstructures and Applications: A Review, J. Mater. Sci. Technol., 2018, 34, p 1–38

    Article  Google Scholar 

  19. F. Humphreys and M. Matherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 1995, p 173–178

    Google Scholar 

  20. F.J. Humphreys, P.B. Prangnell, and R. Priestner, Fine-Grained Alloys by Thermomechanical Processing, Curr. Opin. Solid State Mater. Sci., 2001, 5(1), p 15–21

    Article  Google Scholar 

  21. S. Swaminathan, K. Oh-Ishi, A.P. Zhilyaev, C.B. Fuller, B. London, M.W. Mahoney, and T.R. McNelley, Peak Stir Zone Temperatures during Friction Stir Processing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2010, 41(3), p 631–640

    Article  Google Scholar 

  22. S. Ahmadifard, S. Kazemi, and A. Heidarpour, Production and Characterization of A5083-Al2O3-TiO2 Hybrid Surface Nanocomposite by Friction Stir Processing, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2018, 232(4), p 287–293. https://doi.org/10.1177/1464420715623977

    Google Scholar 

  23. N. Yuvaraj and S. Aravindan, Fabrication of Al5083/B4C Surface Composite by Friction Stir Processing and Its Tribological Characterization, J. Mater. Res. Technol., 2015, 4(4), p 398–410. https://doi.org/10.1016/j.jmrt.2015.02.006

    Article  Google Scholar 

  24. Y. Mazaheri, F. Karimzadeh, and M.H. Enayati, Tribological Behavior of A356/Al2O3 Surface Nanocomposite Prepared by Friction Stir Processing, Metall. Mater. Trans. A, 2014, 45(4), p 2250–2259. https://doi.org/10.1007/s11661-013-2140-x

    Article  Google Scholar 

  25. S. Shahraki, S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP), Metall. Mater. Trans. B, 2013, 44(6), p 1546–1553. https://doi.org/10.1007/s11663-013-9914-9

    Article  Google Scholar 

  26. S.A. Hosseini, K. Ranjbar, R. Dehmolaei, and A.R. Amirani, Fabrication of Al5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing, J. Alloys Compd., 2015, 622, p 725–733. https://doi.org/10.1016/j.jallcom.2014.10.158

    Article  Google Scholar 

  27. M. Amra, K. Ranjbar, and R. Dehmolaei, Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites, J. Mater. Eng. Perform., 2015, 24(8), p 3169–3179

    Article  Google Scholar 

  28. C.N. Shyam Kumar, R. Bauri, and D. Yadav, Wear Properties of 5083 Al-W Surface Composite Fabricated by Friction Stir Processing, Tribol. Int., 2016, 101, p 284–290. https://doi.org/10.1016/j.triboint.2016.04.033

    Article  Google Scholar 

  29. R. Bauri, D. Yadav, C.N. Shyam Kumar, and B. Balaji, Tungsten Particle Reinforced Al 5083 Composite with High Strength and Ductility, Mater. Sci. Eng. A, 2014, 620, p 67–75. https://doi.org/10.1016/j.msea.2014.09.108

    Article  Google Scholar 

  30. R. Bauri, G.D. Janaki Ram, D. Yadav, and C.N. Shyam Kumar, Effect of Process Parameters and Tool Geometry on Fabrication of Ni Particles Reinforced 5083 Al Composite by Friction Stir Processing, Mater. Today Proc., 2015, 2(4-5), p 3203–3211. https://doi.org/10.1016/j.matpr.2015.07.115

    Article  Google Scholar 

  31. H.I. Kurt, Influence of Hybrid Ratio and Friction Stir Processing Parameters on Ultimate Tensile Strength of 5083 Aluminum Matrix Hybrid Composites, Compos. Part B Eng., 2016, 93, p 26–34. https://doi.org/10.1016/j.compositesb.2016.02.056

    Article  Google Scholar 

  32. A. Heidarpour, S. Ahmadifard, and S. Kazemi, On the Al5083-Al2O3-TiO2 Hybrid Surface Nanocomposite Produced by Friction Stir Processing, Prot. Met. Phys. Chem. Surf., 2018, 54(3), p 409–415. https://doi.org/10.1134/S2070205118030279

    Article  Google Scholar 

  33. A. Heidarpour, N. Shahin, and S. Kazemi, A Novel Approach to in Situ Synthesis of WC-Al2O3 Composite by High Energy Reactive Milling, Int. J. Refract. Met. Hard Mater., 2017, 64, p 1–6

    Article  Google Scholar 

  34. T.R. McNelley, Friction Stir Processing (FSP): Refining Microstructures and Improving Properties, Rev. Metal., 2010, 46, p 149–156. https://doi.org/10.3989/revmetalmadrid.19XIIPMS

    Article  Google Scholar 

  35. R. Abdi Behnagh, M.K. Besharati Givi, and M. Akbari, Mechanical Properties, Corrosion Resistance, and Microstructural Changes during Friction Stir Processing of 5083 Aluminum Rolled Plates, Mater. Manuf. Process., 2012, 27(6), p 636–640

    Article  Google Scholar 

  36. Y. Chen, H. Ding, J. Li, Z. Cai, J. Zhao, and W. Yang, Influence of Multi-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy, Mater. Sci. Eng. A, 2016, 650, p 281–289. https://doi.org/10.1016/j.msea.2015.10.057

    Article  Google Scholar 

  37. J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, and J. Wei, Effects of Nano-Al2O3 Particle Addition on Grain Structure Evolution and Mechanical Behaviour of Friction-Stir-Processed Al, Mater. Sci. Eng. A, 2014, 602, p 143–149. https://doi.org/10.1016/j.msea.2014.02.022

    Article  Google Scholar 

  38. I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, and P.W. Kao, Particle-Reinforced Aluminum Matrix Composites Produced from Powder Mixtures via Friction Stir Processing, Compos. Sci. Technol., 2011, 71(5), p 693–698

    Article  Google Scholar 

  39. R. Yang, Z. Zhang, Y. Zhao, G. Chen, Y. Guo, M. Liu, and J. Zhang, Effect of Multi-Pass Friction Stir Processing on Microstructure and Mechanical Properties of Al3Ti/A356 Composites, Mater. Charact., 2015, 106, p 62–69. https://doi.org/10.1016/j.matchar.2015.05.019

    Article  Google Scholar 

  40. K.-M. Lee, D.-K. Oh, W.-S. Choi, T. Weissgärber, and B. Kieback, Thermomechanical Properties of AlN-Cu Composite Materials Prepared by Solid State Processing, J. Alloys Compd., 2007, 434-435, p 375–377. https://doi.org/10.1016/j.jallcom.2006.08.176

    Article  Google Scholar 

  41. S. Rathee, S. Maheshwari, and A.N. Siddiquee, Issues and Strategies in Composite Fabrication via Friction Stir Processing: A Review, Mater. Manuf. Process., 2018, 33, p 239–261

    Article  Google Scholar 

  42. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341(5), p 307–310

    Article  Google Scholar 

  43. N. Yuvaraj and S. Aravindan, Comparison Studies on Mechanical and Wear Behavior of Fabricated Aluminum Surface Nano Composites by Fusion and Solid State Processing, Surf. Coat. Technol., 2017, 309, p 309–319. https://doi.org/10.1016/j.surfcoat.2016.11.076

    Article  Google Scholar 

  44. T.S. Mahmoud, O.M. Shaban, H.M. Zakaria, and T.A. Khalifa, On Effect of FSP on Microstructural and Mechanical Characteristics of A390 Hypereutectic Al-Si Alloy, Mater. Sci. Technol., 2010, 26(9), p 1120–1124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Heidarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarpour, A. Fabrication and Characterization of A5083-WC-Al2O3 Surface Composite by Friction Stir Processing. J. of Materi Eng and Perform 28, 2747–2753 (2019). https://doi.org/10.1007/s11665-019-04093-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04093-0

Keywords

Navigation