Manufacturing of Ultra-Fine Particle Coal Fly Ash–A380 Aluminum Matrix Composites with Improved Mechanical Properties by Improved Ring Milling and Oscillating Microgrid Mixing

Abstract

An experimental study is presented of ultra-fine coal fly ash (CFA) aluminum matrix composites produced by successive high-power ring milling of CFA, oscillating microgrid mixing of the CFA–aluminum melt, gravity casting and rapid cooling. Samples corresponding to different CFA concentrations and particle size distributions (1 μm average, or less) are produced and subjected to microstructural and mechanical characterization, including tensile, compressive, impact, hardness and wear testing. While the usual trade-off between increased strength and hardness and reduced ductility and toughness is observed, the obtained ultra-fine particle composites are confirmed to have overall improved mechanical properties compared to composites with larger size particles previously produced by ball milling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    T.J.A. Doel and P. Bowen, Tensile Properties of Particulate-Reinforced Metal Matrix Composites, Compos. Part A Appl. Sci. Manuf., 1996, 27(8), p 655–665

    Article  Google Scholar 

  2. 2.

    S.V. Prasad and R. Asthana, Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations, Tribol. Lett., 2004, 17(3), p 445–453

    CAS  Article  Google Scholar 

  3. 3.

    A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas, and H. Mavros, Microstructural Observations in a Cast Al-Si-Cu/TiC Composite, J. Mater. Eng. Perform., 2010, 19(4), p 585–590

    CAS  Article  Google Scholar 

  4. 4.

    P.K. Rohatgi, Low-Cost, Fly-Ash-Containing Aluminum-Matrix Composites, JOM J. Miner. Met. Mater. Soc., 1994, 46(11), p 55–59

    CAS  Article  Google Scholar 

  5. 5.

    P.K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, and R. Asthana, Pressure Infiltration Technique for Synthesis of Aluminum–Fly Ash Particulate Composite, Mater. Sci. Eng., A, 1998, 244(1), p 22–30

    Article  Google Scholar 

  6. 6.

    Y. Yang, J. Lan, and X. Li, Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy, Mater. Sci. Eng., A, 2004, 380(1), p 378–383

    Article  CAS  Google Scholar 

  7. 7.

    E. Gikunoo, O. Omotoso, and I.N.A. Oguocha, Effect of Fly Ash Particles on the Mechanical Properties of Aluminium Casting Alloy A535, Mater. Sci. Technol., 2005, 21(2), p 143–152

    CAS  Article  Google Scholar 

  8. 8.

    M.K. Surappa, Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization, Mater. Sci. Eng., A, 2008, 480(1), p 117–124

    Google Scholar 

  9. 9.

    A. Moutsatsou, G. Itskos, P. Vounatsos, N. Koukouzas, and C. Vasilatos, Microstructural Characterization of PM-Al and PM-Al/Si Composites Reinforced with Lignite Fly Ash, Mater. Sci. Eng., A, 2010, 527(18), p 4788–4795

    Article  CAS  Google Scholar 

  10. 10.

    S. Zahi and A.R. Daud, Fly Ash Characterization and Application in Al-Based Mg Alloys, Mater. Des., 2011, 32(3), p 1337–1346

    CAS  Article  Google Scholar 

  11. 11.

    G. Itskos, A. Moutsatsou, P.K. Rohatgi, N. Koukouzas, C. Vasilatos, and E. Katsika, Compaction of High-Ca Fly Ash-Al-and Al-Alloy-Composites: Evaluation of Their Microstructure and Tribological Performance, Coal Combust. Gasif. Prod., 2011, 3, p 75–82

    Google Scholar 

  12. 12.

    H.C. Anilkumar, H.S. Hebbar, and K.S. Ravishankar, Mechanical Properties of Fly Ash Reinforced Aluminium Alloy (Al6061) Composites, Int. J. Mech. Mater. Eng., 2011, 6(1), p 41–45

    Google Scholar 

  13. 13.

    I.N. Murthy, D.V. Rao, and J.B. Rao, Microstructure and Mechanical Properties of Aluminum–Fly Ash Nano Composites Made by Ultrasonic Method, Mater. Des., 2012, 35, p 55–65

    Article  CAS  Google Scholar 

  14. 14.

    Y. Sahin, Preparation and Some Properties of SiC Particle Reinforced Aluminium Alloy Composites, Mater. Des., 2003, 24(8), p 671–679

    CAS  Article  Google Scholar 

  15. 15.

    H. Ahlatci, T. Kocer, E. Candan, and H. Çimenoğlu, Wear Behaviour of Al/(Al2O3p + SiC p) Hybrid Composites, Tribol. Int., 2006, 39(3), p 213–220

    CAS  Article  Google Scholar 

  16. 16.

    S.Q. Wu, H.Z. Wang, and S.C. Tjong, Mechanical and Wear Behavior of an Al/Si Alloy Metal-Matrix Composite Reinforced with Aluminosilicate Fiber, Compos. Sci. Technol., 1996, 56(11), p 1261–1270

    CAS  Article  Google Scholar 

  17. 17.

    N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, New York, 2006

    Google Scholar 

  18. 18.

    B.S. Ünlü, Investigation of Tribological and Mechanical Properties Al2O3-SiC Reinforced Al Composites Manufactured by Casting or P/M Method, Mater. Des., 2008, 29(10), p 2002–2008

    Article  CAS  Google Scholar 

  19. 19.

    G.V. Kumar, C.S.P. Rao, and N. Selvaraj, Studies on Mechanical and Dry Sliding Wear of Al6061-SiC Composites, Compos. Part B Eng., 2012, 43(3), p 1185–1191

    Article  CAS  Google Scholar 

  20. 20.

    M.N. Wahab, A.R. Daud, and M.J. Ghazali, Preparation and Characterization of Stir Cast-Aluminum Nitride Reinforced Aluminum Metal Matrix Composites, Int. J. Mech. Mater. Eng., 1970, 4(2), p 115–117

    Google Scholar 

  21. 21.

    S. Basavarajappa, G. Chandramohan, and A. Dinesh, Mechanical Properties of mmc’s—An Experimental Investigation, in International Symposium of Research on Materials and Engineering, IIT, Madras, December, vol. 20, pp. 1–8 (2004)

  22. 22.

    W. Jiang, Z. Fan, G. Li, L. Yang, and X. Liu, Effects of Melt-to-Solid Insert Volume Ratio on the Microstructures and Mechanical Properties of Al/Mg Bimetallic Castings Produced by Lost Foam Casting, Metall. Mater. Trans. A, 2016, 47(12), p 6487–6497

    CAS  Article  Google Scholar 

  23. 23.

    W. Jiang, G. Li, Z. Fan, L. Wang, and F. Liu, Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting, Metall. Mater. Trans. A, 2016, 47(5), p 2462–2470

    CAS  Article  Google Scholar 

  24. 24.

    S. Charles, and V.P. Arunachalam, Property Analysis and Mathematical Modeling of Machining Properties of Aluminium Alloy Hybrid (Al-Alloy/SiC/Flyash) Composites Produced by Liquid Metallurgy and Powder Metallurgy Techniques (2004).

  25. 25.

    K.V. Mahendra and K. Radhakrishna, Fabrication of Al-4.5% Cu Alloy with Fly Ash Metal Matrix Composites and Its Characterization, Mater. Sci. Pol., 2007, 25(1), p 57–68

    CAS  Google Scholar 

  26. 26.

    S. Sudarshan and M.K. Surappa, Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization, Mater. Sci. Eng., A, 2008, 480, p 117–124

    Article  CAS  Google Scholar 

  27. 27.

    G. Itskos, P.K. Rohatgi, A. Moutsatsou, J.D. DeFouw, N. Koukouzas, C. Vasilatos, and B.F. Schultz, Synthesis of A356 Al–High-Ca Fly Ash Composites by Pressure Infiltration Technique and Their Characterization, J. Mater. Sci., 2012, 47(9), p 4042–4052

    CAS  Article  Google Scholar 

  28. 28.

    P.K. Rohatgi, A. Daoud, B.F. Schultz, and T. Puri, Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites, Compos. Part A Appl. Sci. Manuf., 2009, 40(6), p 883–896

    Article  CAS  Google Scholar 

  29. 29.

    V. Spitas and C. Spitas, Stochastic Simulation of the Power Requirements of Dry Clinker Pulverisation, Int. J. Miner. Process., 2012, 106, p 42–49

    Article  CAS  Google Scholar 

  30. 30.

    V. Spitas, P. Makris, and M. Founti, A Novel Dry Pulverizer for Low Cost Production of Powders, Part. Sci. Technol., 1999, 17(3), p 217–228

    CAS  Article  Google Scholar 

  31. 31.

    R.D. West and V.M. Malhotra, Rupture of Nanoparticle Agglomerates and Formulation of Al2O3-Epoxy Nanocomposites Using Ultrasonic Cavitation Approach: Effects on the Structural and Mechanical Properties, Polym. Eng. Sci., 2006, 46(4), p 426–430

    CAS  Article  Google Scholar 

  32. 32.

    G. Kaisarlis, E. Tsolakis, G. Vasileiou, V. Spitas, Z. Tauanov, and C. Spitas, Efficient Oscillating Micro-grid Mixing of CFA-Aluminium Composite Melts, J. Mater. Process. Technol., 2018, 254, p 60–71

    CAS  Article  Google Scholar 

  33. 33.

    T. Tauanov, L. Abylgazina, D. Nurmukhambetov, A. Baimenov, C. Spitas, G. Itskos, and V.J. Inglezakis, Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants, in 2017 International Conference on Materials Sciences and Nanomaterials (ICMSN 2017), July 14–16, Barcelona, Spain (2017)

  34. 34.

    X. Querol, N. Moreno, J.T. Umaña, A. Alastuey, E. Hernández, A. Lopez-Soler, and F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol., 2002, 50(1), p 413–423

    CAS  Article  Google Scholar 

  35. 35.

    A.M. Cardoso, A. Paprocki, L.S. Ferret, C.M. Azevedo, and M. Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 2015, 139, p 59–67

    CAS  Article  Google Scholar 

  36. 36.

    T. Aldahri, J. Behin, H. Kazemian, and S. Rohani, Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment, Fuel, 2016, 182, p 494–501

    CAS  Article  Google Scholar 

  37. 37.

    T.V. Ojumu, P.W. Du Plessis, and L.F. Petrik, Synthesis of zeolite A from coal fly ash using ultrasonic treatment—a replacement for fusion step, Ultrason. Sonochem., 2016, 31, p 342–349

    CAS  Article  Google Scholar 

  38. 38.

    ASTM B557 M-15, Standard Test Methods for Tension Testing Wrought and Cast Aluminium- and Magnesium-Alloy Products

  39. 39.

    ASTM E9—09, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature

  40. 40.

    ASTM E23—16b, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials

Download references

Acknowledgments

This work was supported by the internal fund for research of Nazarbayev University (Project NANOCAST, Grant No. SOE2016002) and the Ministry of Education and Science of Kazakhstan. The authors would also like to thank the thermal power plants of Oskemen and Astana cities for generously providing with CFA samples to carry out the studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christos Spitas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaisarlis, G., Vasiliou, G., Spitas, V. et al. Manufacturing of Ultra-Fine Particle Coal Fly Ash–A380 Aluminum Matrix Composites with Improved Mechanical Properties by Improved Ring Milling and Oscillating Microgrid Mixing. J. of Materi Eng and Perform 28, 2630–2640 (2019). https://doi.org/10.1007/s11665-019-04083-2

Download citation

Keywords

  • A380 aluminum alloy
  • high-energy ring milling
  • metal matrix composites
  • mechanical testing
  • ultra-fine coal fly ash (CFA)