Skip to main content

Advertisement

Log in

Influence of Organics Cladding Pretreatment on Microstructures and Properties of Austenitic Steel Coating via Laser Remanufacturing Technology

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We report a new organics cladding pretreatment technique to fabricate the austenitic steel coating via the laser remanufacturing technology and demonstrate that the organics cladding pretreatment could refine the grains and alleviate defects of the coating remarkably, which consequently enhances significantly the mechanical property. In addition, a new synchronous lateral powder feeding device is employed to prevent the nozzle from being blocked by organics coated powder and also protect the surface of the molten pool from being oxidized. This new organics cladding pretreatment technique may be important for the technological improvement in the mechanical property of coating fabricated via laser remanufacturing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X.Y. Long, F.C. Zhang, and C.Y. Zhang, Effect of Mn Content on Low-Cycle Fatigue Behaviors of Low-Carbon Bainitic Steel, Mater. Sci. Eng. A, 2017, 697, p 111–118

    Article  Google Scholar 

  2. C.Y. Chen, Microstructure Characterization of Nanocrystalline Bainitic Steel During Tempering, J. Alloys Compd., 2018, 762, p 340–346

    Article  Google Scholar 

  3. Z.J. Xie, X.P. Ma, C.J. Shang, X.M. Wang, and S.V. Subramanian, Nano-Sized Precipitation and Properties of a Low Carbon Niobium Micro-alloyed Bainitic Steel, Mater. Sci. Eng. A, 2015, 641, p 37–44

    Article  Google Scholar 

  4. P. Cizek, B.P. Wynne, C.H.J. Davies, and P.D. Hodgson, The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Line Pipe Steel, Metall. Mater. Trans. A, 2015, 46, p 407–425

    Article  Google Scholar 

  5. B. Claire and P. Fernando, Characterisation of Aluminium Diffusion Coatings Elaborated on Austenitic Stainless Steels and on Ferritic-Martensitic Steels, Surf. Coat. Technol., 2018, 339, p 27–36

    Article  Google Scholar 

  6. K. Luboš, D. Petr, and S. Václav, High Temperature Creep of Sanicro 25 Austenitic Steel at Low Stresses, Mater. Sci. Eng. A, 2018, 722, p 88–92

    Article  Google Scholar 

  7. T.P. Hang and I. Takeshi, An Evaluation of Fracture Properties of Type-304 Austenitic Stainless Steel at High Deformation Rate Using the Small Punch Test, Int. J. Mech. Sci., 2018, 144, p 249–261

    Article  Google Scholar 

  8. L. Mujica Roncery, L. Agudo Jácome, A. Aghajani, W. Theisen, and S. Weber, Subsurface Characterization of High-Strength High-Interstitial Austenitic Steels After Impact Wear, Wear, 2018, 402–403, p 137–147

    Article  Google Scholar 

  9. Y. Tomota, M. Ojima, S. Harjo, W. Gong, S. Sato, and T. Ungárd, Dislocation Densities and Intergranular Stresses of Plastically Deformed Austenitic Steels, Mater. Sci. Eng. A, 2019, 734, p 32–39

    Article  Google Scholar 

  10. W.T. Han, Y.C. Liu, F.R. Wan, P.P. Liu, and S.M. Ohnuki, Deformation Behavior of Austenitic Stainless Steel at Deep Cryogenic Temperatures, J. Nucl. Mater., 2018, 504, p 29–32

    Article  Google Scholar 

  11. M. Lieder and A. Rashid, Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry, J. Clean. Prod., 2016, 115, p 36–51

    Article  Google Scholar 

  12. X. Dai, S. Zhou, M. Wang, J. Lei, C. Wang, and T. Wang, Microstructure Evolution of Phase Separated Fe-Cu-Cr-C Coatings by Laser Induction Hybrid Cladding, Surf. Coat. Technol., 2017, 324, p 518–525

    Article  Google Scholar 

  13. Z. Wang, J. Zhang, P. Zhang, H. Zhou, and T. Zhou, Effect of the 75ferrosilicon on the laser cladding on gray cast iron, Opt. Laser Technol., 2019, 113, p 64–71

    Article  Google Scholar 

  14. B.A. Khamidullin, I.V. Tsivilskiy, A.I. Gorunov, and A.Kh. Gilmutdinov, Modeling of the effect of powder parameters on laser cladding using coaxial nozzle, Surf. Coat. Technol., 2019, 364, p 430–443

    Article  Google Scholar 

  15. D. Cichowski, P.C. Zhang, P. Woias, I. Krossing, and K. Cobry, Laser rapid Prototyping and Modular Packaging of Chip-Based Microreactors for Direct Fluorination Reactions, Chem. Eng. Res. Des., 2017, 128, p 318–330

    Article  Google Scholar 

  16. L.Y. Han, C.S. Wang, and J.B. Qiang, Microstructure and Properties of Ti-Fe-Zr-Y Alloys Prepared by Laser Rapid Prototyping, J. Alloys Compd., 2017, 700, p 159–168

    Article  Google Scholar 

  17. J. del Val, R. López-Cancelos, A. Riveiro, A. Badaoui, F. Lusquiños, F. Quintero, R. Comesaña, M. Boutinguiza, and J. Pou, On the Fabrication of Bioactive Glass Implants for Bone Regeneration by Laser Assisted Rapid Prototyping Based on Laser Cladding, Ceram. Int., 2016, 42, p 2021–2035

    Article  Google Scholar 

  18. D.S. Zhang and B.L. Gökce, Perspective of Laser-Prototyping Nanoparticle-Polymer Composites, Appl. Surf. Sci., 2017, 392, p 991–1003

    Article  Google Scholar 

  19. H.P. Qu, P. Li, S.Q. Zhang, A. Li, and H.M. Wang, Microstructure and Mechanical Property of Laser Melting Deposition (LMD) Ti/TiAl Structural Gradient Material, Mater. Des., 2010, 31, p 574–582

    Article  Google Scholar 

  20. C.M. Liu, H.M. Wang, X.J. Tian, and H.B. Tang, Subtransus Triplex Heat Treatment of Laser Melting Deposited Ti-5Al-5Mo-5V-1Cr-1Fe Near β Titanium Alloy, Mater. Sci. Eng. A, 2014, 590, p 30–36

    Article  Google Scholar 

  21. A. Zhang, D. Liu, X. Wu, and H. Wang, Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Deposited Ti60A Alloy, J. Alloys Compd., 2014, 585, p 220–228

    Article  Google Scholar 

  22. Y. Zhu, D. Liu, X. Tian, H. Tang, and H. Wang, Characterization of Microstructure and Mechanical Properties of Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Mater. Des., 2014, 56, p 445–453

    Article  Google Scholar 

  23. S. Manikandakumar, P. Ashwin, and L.F. Guy, Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars, Procedia Technol., 2015, 20, p 231–236

    Article  Google Scholar 

  24. Y.J. Li, S.Y. Dong, S.X. Yan, X.T. Liu, P. He, and B.S. Xu, Surface Remanufacturing of Ductile Cast Iron by Laser Cladding Ni-Cu Alloy Coatings, Surf. Coat. Technol., 2018, 347, p 20–28

    Article  Google Scholar 

  25. F. Bruckner, D. Lepski, and E. Beyer, Modeling the Influence of Process Parameters and Additional Heat Sources on Residual Stresses in Laser Cladding, J. Therm. Spray Technol., 2007, 16, p 355–373

    Article  Google Scholar 

  26. A. Plati, J. Tan, I. Golosnoy, R. Persoons, K.A. Van, and T. Clyne, Residual Stress Generation During Laser Cladding of Steel with a Particulate Metal Matrix Composite, Adv. Eng. Mater., 2006, 8, p 619–624

    Article  Google Scholar 

  27. S. Ghosh and J. Choi, Three-Dimensional Transient Finite Element Analysis for Residual Stresses in the Laser Aided Direct Metal/Material Deposition Process, J. Laser Appl., 2005, 17, p 144–158

    Article  Google Scholar 

  28. Y. Zhang, C.J. Qiu, Y. Chen, J.S. Yu, J. Zhou, L.S. Li, and Z.C. Wang, Influence of High-Frequency Micro-forging on Microstructure and Properties of 304 Stainless Steel Fabricated by Laser Rapid Prototyping, Steel Res. Int., 2013, 84, p 870–877

    Article  Google Scholar 

  29. Y. Chen, L.B. Hu, C.J. Qiu, and Q. Huang, Characterisation of Multiphase Ceramic Coatings Fabricated via Laser In Situ Reaction Technology, Surf. Eng., 2018, 34, p 301–308

    Article  Google Scholar 

  30. Y. Chen, T.M. Liu, L.W. Lu, and Z.C. Wang, Thermally Diffused Antimony and Zinc Coatings on Magnesium Alloys AZ31, Surf. Eng., 2012, 28, p 382–386

    Article  Google Scholar 

  31. Y. Chen, S.H. Lv, C.L. Chen, C.J. Qiu, X.F. Fan, and Z.C. Wang, Controllable Synthesis of Ceria Nanoparticles with Uniform Reactive 100 Exposure Planes, J. Phys. Chem. C, 2014, 118, p 4437–4443

    Article  Google Scholar 

  32. P.F. Hua, Y. Chen, R. Sun, Y. Chen, Y.R. Yin, and Z.C. Wang, Synthesis, Characterization and Frictional Wear Behavior of Ceria Hybrid Architectures with 111 Exposure Planes, Appl. Surf. Sci., 2017, 401, p 100–105

    Article  Google Scholar 

  33. K. Amrita and C.C. Pravash, Effect of Austenite Grain Size and Composition on Matrix Microstructure and Properties of Steel, Procedia Mater. Sci., 2014, 5, p 1141–1147

    Article  Google Scholar 

  34. L.C. Valeria, N.L. Hernán, and G.S. Hernán, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels, Procedia Mater. Sci., 2015, 8, p 1047–1056

    Article  Google Scholar 

  35. D. Sudip, T. Solaiman, B. Amit, and B. Susmita, Effect of Grain Size on Mechanical, Surface and Biological Properties of Microwave Sintered Hydroxyapatite, Mater. Sci. Eng. C, 2013, 33, p 2846–2854

    Article  Google Scholar 

  36. Q. Wang, R.R. Chen, Y. Yang, J.J. Guo, and H.Z. Fu, Effects of Grain Size and Precipitated Phases on Mechanical Properties in TiAl Gradient Materials, Mater. Sci. Eng. A, 2018, 731, p 634–641

    Article  Google Scholar 

  37. H.L. Jia, X.J. Liu, Z.X. Li, S.Y. Sun, M.C.S. Pande, and K.P. Cooper, The Effect of Grain Size on the Deformation Mechanisms and Mechanical Properties of Polycrystalline TiN: A Molecular Dynamics Study, Comput. Mater. Sci., 2018, 143, p 189–194

    Article  Google Scholar 

  38. C.S. Pande and K.P. Cooper, Nanomechanics of Hall–Petch Relationship in Nanocrystalline Materials, Prog. Mater. Sci., 2009, 54, p 689–706

    Article  Google Scholar 

  39. R.A. Masumura, P.M. Hazzledine, and C.S. Pande, Yield Stress of Fine Grained Materials, Acta Mater., 1998, 46, p 4527–4534

    Article  Google Scholar 

  40. C. Rieker, D.G. Morris, and J. Steffen, Formation of Hard Microcrystalline Layers on Stainless Steel by Laser Alloying, Mater. Sci. Technol., 1989, 5, p 590–594

    Article  Google Scholar 

  41. C.T. Kwok, F.T. Cheng, and H.C. Man, Laser-Fabricated Fe-Ni-Co-Cr-B Austenitic Alloy on Steels Part I, Microstructures and Cavitation Erosion Behaviour, Surf. Coat. Technol., 2001, 145, p 194–205

    Article  Google Scholar 

  42. K.G. Carroll, L.S. Darken, E.W. Filer, and L. Zwell, A New Iron Boro-Carbide, Nature, 1954, 74, p 978

    Article  Google Scholar 

  43. G.M. Michal, F. Ernst, and A.H. Heuer, Carbon Paraequilibrium in Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37, p 1819–1824

    Article  Google Scholar 

  44. G.M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A.H. Heuer, Carbon Supersaturation Due to Paraequilibrium Carburization: Stainless Steels with Greatly Improved Mechanical Properties, Acta Mater., 2006, 54, p 1597–1606

    Article  Google Scholar 

  45. C. Lee, J. Youn, Y. Lee, and Y. Kim, Effect of Eutectic Si Particles on the Defect Susceptibility of Tensile Properties to Microporosity Variation in Al-xSi Binary Alloys, Mater. Sci. Eng. A, 2016, 678, p 227–234

    Article  Google Scholar 

  46. O. Falcó, J.A. Mayugo, C.S. Lopes, N. Gascons, and J. Costa, Variable-Stiffness Composite Panels: Defect Tolerance Under In-Plane Tensile Loading, Compos. Part A Appl. Sci., 2014, 63, p 21–31

    Article  Google Scholar 

  47. X.J. Chao, L.H. Qi, J. Cheng, W.L. Tian, and H.J. Li, Numerical Evaluation of the Effect of Pores on Effective Elastic Properties of Carbon/Carbon Composites, Compos. Struct., 2018, 196, p 108–116

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial supports by the National Natural Science Foundation of China (Grant No. 51474130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hu, L. & Qiu, C. Influence of Organics Cladding Pretreatment on Microstructures and Properties of Austenitic Steel Coating via Laser Remanufacturing Technology. J. of Materi Eng and Perform 28, 2736–2746 (2019). https://doi.org/10.1007/s11665-019-04078-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04078-z

Keywords

Navigation