Skip to main content

Advertisement

Log in

Tailoring Microstructure and Properties of a Superelastic Ti–Ta Alloy by Incorporating Spark Plasma Sintering with Thermomechanical Processing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A powder metallurgy Ti–35 at.% Ta alloy was produced using a spark plasma sintering process. The sintered alloy exhibited Ta-rich regions at a sintering temperature of 1100 °C. Complete diffusion of elemental powders was achieved via homogenization heat treatment at 1500 °C for 12 h, but the ductility declined drastically. The brittle behavior of the homogenized sample was due to the high-oxygen content, continuous grain boundary α-phase and high-angle grain boundaries. Excellent mechanical properties were achieved when hot forging was used along with preheating the homogenized specimen at 1100 °C. The mechanisms underlying this phenomenon were suppression of the solid grain boundary α-phase, high fraction of low-angle grain boundaries and dynamic recrystallization. Tensile strength improved to the maximum value of 868 MPa. The strain recovery ratio increased to 90% in the first cycle during a cyclic loading–unloading test. Incomplete strain recovery of the first cycle was due to the presence of the martensite phase (α″).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.E. Mcmahon, J. Ma, S.V. Verkhoturov, D. Munoz-pinto, I. Karaman, F. Rubitschek, H.J. Maier, and M.S. Hahn, A Comparative Study of the Cytotoxicity and Corrosion Resistance of Nickel–Titanium and Titanium–Niobium Shape Memory Alloys, Acta Biomater., 2012, 8(7), p 2863–2870

    Article  Google Scholar 

  2. S. Lu, F. Ma, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, Q. Han, and L. Zhang, Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing, J. Mater. Eng. Perform., 2018, 27(8), p 4100–4106

    Article  Google Scholar 

  3. H.Y. Kim, J. Fu, H. Tobe, J. Il Kim, and S. Miyazaki, Crystal Structure, Transformation Strain, and Superelastic Property of Ti–Nb–Zr and Ti–Nb–Ta Alloys, Shap. Mem. Superelasticity, 2015, 1(2), p 107–116

    Article  Google Scholar 

  4. P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki, Novel β-TiTaAl Alloys with Excellent Cold Workability and a Stable High-Temperature Shape Memory Effect, Scr. Mater., 2011, 64(12), p 1114–1117

    Article  Google Scholar 

  5. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, and M. Morinaga, Phase Stability Change with Zr Content in β-type Ti-Nb Alloys, Scr. Mater., 2007, 57(11), p 1000–1003

    Article  Google Scholar 

  6. H.Y. Kim, T. Fukushima, P.J.S. Buenconsejo, T. hyun Nam, and S. Miyazaki, Martensitic Transformation and Shape Memory Properties of Ti-Ta-Sn High Temperature Shape Memory Alloys, Mater. Sci. Eng. A;, 2011, 528(24), p 7238–7246

    Article  Google Scholar 

  7. P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, and S. Miyazaki, Shape Memory Behavior of Ti-Ta and Its Potential as a High-Temperature Shape Memory Alloy, Acta Mater., 2009, 57(4), p 1068–1077

    Article  Google Scholar 

  8. J.P. Oliveira, Z. Zeng, S. Berveiller, D. Bouscaud, F.M. Braz Fernandes, R.M. Miranda, and N. Zhou, Laser Welding of Cu-Al-Be Shape Memory Alloys: Microstructure and Mechanical Properties, Mater. Des., 2018, 148, p 145–154

    Article  Google Scholar 

  9. J.P. Oliveira, N. Schell, N. Zhou, L. Wood, and O. Benafan, Laser Welding of Precipitation Strengthened Ni-rich NiTiHf High Temperature Shape Memory Alloys: Microstructure and Mechanical Properties, Mater. Des., 2019, 162, p 229–234

    Article  Google Scholar 

  10. Y.L. Zhou, M. Niinomi, and T. Akahori, Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti–Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A., 2004, 371(1), p 283–290

    Article  Google Scholar 

  11. A. Bahador, E. Hamzah, K. Kondoh, T. Asma Abubakar, F. Yusof, J. Umeda, S.N. Saud, and M.K. Ibrahim, Microstructure and Superelastic Properties of Free Forged Ti–Ni Shape-Memory Alloy, Trans. Nonferrous Met. Soc. China., 2018, 28(3), p 502–514

    Article  Google Scholar 

  12. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian, Sintering of Ti-10V-2Fe-3Al and Mechanical Properties, Mater. Sci. Eng. A., 2011, 528(22–23), p 6719–6726

    Article  Google Scholar 

  13. Y.H. Hee, Y.Q. Zhang, Y.H. Jiang, and R. Zhou, Microstructure Evolution and Enhanced Bioactivity of Ti-Nb-Zr Alloy by Bioactive Hydroxyapatite Fabricated: Via Spark Plasma Sintering, RSC Adv., 2016, 6(103), p 100939–100953

    Article  Google Scholar 

  14. Y. Liu, K. Li, H. Wu, M. Song, W. Wang, and N. Li, Synthesis of Ti-Ta Alloys with Dual Structure by Incomplete Diffusion Between Elemental Powders, J. Mech. Behav. Biomed., 2015, 51, p 302–312

    Article  Google Scholar 

  15. D. Ansel, I. Thibon, M. Boliveau, and J. Debuigne, Interdiffusion in the Body Cubic Centered β-phase of Ta–Ti Alloys, Acta Mater., 1998, 46(2), p 423–430

    Article  Google Scholar 

  16. A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, and H. Kyogoku, Fabrication of Ti–Nb Alloys by Powder Metallurgy Process and Their Shape Memory Characteristics, J. Alloy. Compd., 2013, 577, p S408–S412

    Article  Google Scholar 

  17. K. Zhao, Y. Liu, L. Huang, B. Liu, and Y. He, Diffusion Bonding of Ti-45Al-7Nb-0.3 W Alloy by Spark Plasma Sintering, J. Mater. Process. Tech., 2016, 230, p 272–279

    Article  Google Scholar 

  18. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Hot deformation mechanism and microstructure evolution of a new near β titanium alloy, Mater. Sci. Eng. A, 2013, 584, p 121–132

    Article  Google Scholar 

  19. A. Bahador, E. Hamzah, K. Kondoh, T. Asma Abubakar, F. Yusof, H. Imai, S.N. Saud, and M.K. Ibrahim, Effect of Deformation on the Microstructure, Transformation Temperature and Superelasticity of Ti–23 at% Nb Shape-Memory Alloys, Mater. Des., 2017, 118, p 152–162

    Article  Google Scholar 

  20. A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S. Kumar, Microstructure–Fracture Toughness Correlation in an Aircraft Structural Component Alloy Ti–5Al–5V–5Mo–3Cr, Mater. Sci. Eng. A., 2013, 568, p 61–67

    Article  Google Scholar 

  21. K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, and J. Li, Characterization of Hot Deformation Microstructure of a Near Beta Titanium Alloy Ti-5553, J. Alloy. Compd., 2014, 615, p 531–537

    Article  Google Scholar 

  22. L. Lei, X. Huang, M. Wang, L. Wang, J. Qin, H. Li, and S. Lu, Effect of Hot Compressive Deformation on the Martensite Transformation of Ti-10V-2Fe-3Al Titanium Alloy, Mater. Sci. Eng. A.;, 2011, 530, p 591–601

    Article  Google Scholar 

  23. A. Khorsand Zak, W.H. Abd, M.E. Majid, and R.Yousefi Abrishami, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci., 2011, 13(1), p 251–256

    Article  Google Scholar 

  24. R.B. Pérez-Sáez, V. Recarte, M.L. Nó, O.A. Ruano, and J. San Juan, Advanced Shape Memory Alloys Processed by Powder Metallurgy, Adv. Eng. Mater., 2000, 2(1–2), p 49–53

    Article  Google Scholar 

  25. H. Duan, H. Xu, W. Su, Y. Ke, Z. Liu, and H. Song, Effect of Oxygen on the Microstructure And Mechanical Properties of Ti-23Nb-0.7Ta-2Zr Alloy, Int. J. Min. Met. Mater, 2012, 19(12), p 1128–1133

    Article  Google Scholar 

  26. Y.M. Hu, W. Floer, U. Krupp, and H.J. Christ, Microstructurally Short Fatigue Crack Initiation and Growth in Ti-6.8 Mo-4.5 Fe-1.5 Al, Mater. Sci. Eng. A., 2000, 278(1–2), p 170–180

    Article  Google Scholar 

  27. H.J. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A., 2004, 387–389, p 203–208

    Article  Google Scholar 

  28. Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, and D. Zhang, Influence of Oxygen Content on Microstructure and Mechanical Properties of Ti–Nb–Ta–Zr Alloy, Mater. Des., 2011, 32(5), p 2934–2939

    Article  Google Scholar 

  29. W.F. Ho, C.P. Ju, and J.H.C. Lin, Structure and Properties of Cast Binary Ti-Mo Alloys, Biomater., 1999, 20(22), p 2115–2122

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by Project to Create Research and Educational Hubs for Innovative Manufacturing in Asia, Osaka University of Special Budget Project of the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Bahador.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahador, A., Kariya, S., Umeda, J. et al. Tailoring Microstructure and Properties of a Superelastic Ti–Ta Alloy by Incorporating Spark Plasma Sintering with Thermomechanical Processing. J. of Materi Eng and Perform 28, 3012–3020 (2019). https://doi.org/10.1007/s11665-019-04061-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04061-8

Keywords

Navigation