Advertisement

Impact Damage Behavior of Vinyl Ester-, Epoxy-, and Nylon 6-Based Basalt Fiber Composites

  • P. RussoEmail author
  • G. Simeoli
  • F. Cimino
  • I. Papa
  • M. R. Ricciardi
  • V. Lopresto
Article
  • 33 Downloads

Abstract

Composite laminates reinforced by woven basalt fibers and based on different polymer matrices were prepared and mechanically characterized, in static and dynamic conditions, to compare the results and evaluate the influence of the matrix type. In this regard, a thermoplastic resin, polyamide 6 (PA6), and two thermosetting matrices, vinyl ester and epoxy grades, commonly used for high-performance applications, were considered. Indentation depth measurements carried out by a confocal microscope and ultrasound analyses performed on specimens subjected to falling dart tests at levels of impact energies lower than the perforation one permitted to evaluate the extent of plastic deformations and of subjected delaminations, respectively. These data have provided useful information about the involved damage mechanisms and highlighted interesting perspective of use for the eco-friendly thermoplastic sample.

Keywords

basalt fiber composites polyamide 6 epoxy vinyl ester impact damage C-scan 

Notes

Acknowledgments

The authors gratefully acknowledge the ONR Solid Mechanics Program, in the person of Dr. Yapa D.S. Rajapakse, Program Manager, for the financial support provided to this research. The authors especially want to thank Eng Fabio Scherillo for the interesting discussion and for helping the authors in micrograph observations.

References

  1. 1.
    K.L. Pickering, M.G. Aruan Efendy, and T.M. Le, A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance, Compos. Part A Appl. Sci. Manuf., 2016, 83, p 98–112CrossRefGoogle Scholar
  2. 2.
    V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, A Review on Basalt Fibre and its Composites, Compos. Part B Eng., 2015, 74, p 74–94CrossRefGoogle Scholar
  3. 3.
    V. Lopresto, C. Leone, and I. De Iorio, Mechanical Characterization of Basalt Fibre Reinforced Plastic, Compos. Part B, 2011, 42, p 717–723CrossRefGoogle Scholar
  4. 4.
    G. Simeoli, D. Acierno, L. Sorrentino, S. Iannace, F. Sarasini, J. Tirillò, L. Ferrante, M. Valente, T. Valente, and P. Russo, Comparison of Low-Velocity Impact Behavior of Thermoplastic Composites Reinforced with Glass and Basalt Woven Fabrics. 16th ECCM European Conference on Composite Materials, Seville, Spain, 22–26 June 2014Google Scholar
  5. 5.
    M.M. Shokrieh and M. Memar, Stress Corrosion Cracking of Basalt/Epoxy Composites Under Bending Load, Appl. Comput. Mater., 2010, 17(2), p 121–135CrossRefGoogle Scholar
  6. 6.
    R.J. Varley, W. Tian, K.H. Leong, A.Y. Leong, F. Fredo, and M. Quaresimin, The Effect of Surface Treatments on the Mechanical Properties of Basalt-Reinforced Epoxy Composites, Polym. Compos., 2013, 34(3), p 320–329CrossRefGoogle Scholar
  7. 7.
    V. Manikandan, J.T. Winowlin Jappes, S.M. Suresh Kumar, and P. Amuthakkannan, Investigation of the Effect of Surface Modifications on the Mechanical Properties of Basalt Fibre Reinforced Polymer Composites, Compos. Part B Eng., 2012, 43(2), p 812–818CrossRefGoogle Scholar
  8. 8.
    J. Song, L. Jianxun, Y. Zhang, L. Chen, Y. Zhong, and W. Yang, Basalt Fiber-Reinforced PA1012 Composites: Morphology, Mechanical Properties, Crystallization Behaviors, Structure and Water Contact Angle, J. Comput. Mater., 2015, 49(4), p 415–424CrossRefGoogle Scholar
  9. 9.
    T. Deak, T. Czigany, M. Marsalkova, and J. Militky, Manufacturing and Testing of Long Basalt Fiber Reinforced Thermoplastic Matrix Composites, Polym. Eng. Sci., 2010, 50(12), p 2448–2456CrossRefGoogle Scholar
  10. 10.
    R.S. Parajapati, S. Jain, and S.C. Shit, Development of Basalt Fiber-Reinforced Thermoplastic Composites and Effect of PE-g-MA on Composites, Polym. Compos., 2017, 38(12), p 2798–2805CrossRefGoogle Scholar
  11. 11.
    T. Deak, T. Czigany, P. Tamas, and Cs Nemeth, Enhancement of Interfacial Properties of Basalt Fiber Reinforced Nylon 6 Matrix Composites with Silane Coupling Agents, eXPRESS Polym. Lett., 2010, 4(10), p 590–598CrossRefGoogle Scholar
  12. 12.
    L. Sang, M. Zhao, Q. Liang, and Z. Wei, Silane-Treated Basalt Fibre-Reinforced Poly(butylene succinate) Biocomposites: Interfacial Crystallization and Tensile Properties, Polymers, 2017, 9, p 351–364CrossRefGoogle Scholar
  13. 13.
    Z. Ying, D. Wu, M. Zhang, and Y. Qiu, Polylactide/Basalt Fiber Composites with Tailorable Mechanical Properties: Effect of Surface Treatment of Fibers and Annealing, Compos. Struct., 2017, 176, p 1020–1027CrossRefGoogle Scholar
  14. 14.
    A. Greco, A. Maffezzoli, G. Casciaro, and F. Caretto, Mechanical Properties of Basalt Fibres and Their Adhesion to Polypropylene Matrices, Compos. Part B, 2014, 67, p 233–238CrossRefGoogle Scholar
  15. 15.
    R.S. Prajapati, S. Jain, and S.C. Shit, Development of Basalt Fiber-Reinforced Thermoplastic Composites and Effect of PE-g-MA on Composites, Polym. Compos., 2015, 38, p 2798–2805CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, C. Yu, P.K. Chu, F. Lv, C. Zhang, J. Ji, R. Zhang, and H. Wang, Mechanical and Thermal Properties of Basalt Fiber Reinforced Poly(butylene succinate) Composites, Mater. Chem. Phys., 2012, 133, p 845–849CrossRefGoogle Scholar
  17. 17.
    L. Sorrentino, S. Silva de Vasconcellos, M. D’Auria, F. Sarasini, and S. Iannace, Thermooplastic Composites Based on Poly(ethylene 2,6-naphthalate) and Basalt Woven Fabrics: Static and Dynamic Mechanical Properties, Polym. Compos., 2016, http://doi.org/10.1002/pc.23449 Google Scholar
  18. 18.
    A. Akinci, Mechanical and Morphological Properties of Basalt Filled Polymer Matrix Composites, J. Mater. Sci. Eng., 2009, 35, p 29–32Google Scholar
  19. 19.
    S. Sfarra, C. Ibarra-Castanedo, C. Santulli, A. Paoletti, D. Paoletti, F. Sarasini, A. Bendada, and X. Maldague, Falling Weight Impacted Glass and Basalt Fibre Woven Composites Inspected Using Non-destructive Techniques, Compos. Part B, 2013, 45, p 601–608CrossRefGoogle Scholar
  20. 20.
    F. Shishevan, H. Akbulut, and M.A. Mohtadi-Bonab, Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites, JMEPEG, 2017, 26, p 2890–2900. http://doi.org/10.1007/s11665-017-2728-1 CrossRefGoogle Scholar
  21. 21.
    R.K. Gideon, H. Hu, P. Wambua, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, http://doi.org/10.1002/pc.22885 Google Scholar
  22. 22.
    I. Papa, V. Lopresto, G. Simeoli, A. Langella, and P. Russo, Ultrasonic Damage Investigation on Woven Jute/Poly (lactic acid) Composites Subjected to Low Velocity Impact, Compos. Part B, 2017, 115, p 282–288CrossRefGoogle Scholar
  23. 23.
    V. Lopresto, G. Caprino, A. Langella, C. Leone, Penetration and indentation on basalt fibre reinforced plastic laminates under low velocity impacts, Proceedings of 15th European Conference on composite Materials, June 24–28, 2012 Venice, ItalyGoogle Scholar
  24. 24.
    C. Scarponi and M. Valente, An Application of a New Ultrasound Technique to Jute Composite Laminates Subjected to Low Velocity Impacts, Int. J. Mater Prod. Technol., 2006, 26(1–2), p 6–18CrossRefGoogle Scholar
  25. 25.
    G. Busse, Optoacoustic Phase Angle Measurement for Probing a Metal, Appl. Phys. Lett., 1979, 35, p 759–760CrossRefGoogle Scholar
  26. 26.
    G. Caprino, V. Lopresto, C. Scarponi, and G. Briotti, Influence of Material Thickness on the Response of Carbon-Fabric/Epoxy Panels to Low-Velocity Impact, Compos. Sci. Technol., 1999, 59, p 2279–2286CrossRefGoogle Scholar
  27. 27.
    V. Lopresto, A. Langella, I. Papa, Delamination on GFRP Laminates Impacted at Room and Lower Temperatures: Comparison Between Epoxy and Vinylester Resins, ESAFORM 2016 Proceedings of the 19th International ESAFORM Conference on Material Forming, 27–29 April 2016, Nantes, France. Published by AIP Conf. Proc., Vol. 1769. ISBN: 978-0-7354-1427-3 Indicizzato ISI, Scopus, Wos. http://dx.doi.org/10.1063/1.4963435
  28. 28.
    V. Lopresto, A. Langella, I. Papa, CFRP and GFRP Laminates in Vinylester Resin Impacted At Low Temperature, 1st International Conference on Impact Loading of Structures and Materials, ICILSM 2016, 22/26 May 2016, Turin, Italy.Google Scholar
  29. 29.
    V. Lopresto, A. Langella, and I. Papa, Residual Strength Evaluation After Impact Tests in Extreme Conditions on CFRP Laminates, Procedia Eng., 2016, 167, p 138–142CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • P. Russo
    • 1
    Email author
  • G. Simeoli
    • 1
  • F. Cimino
    • 1
  • I. Papa
    • 2
  • M. R. Ricciardi
    • 3
  • V. Lopresto
    • 2
  1. 1.Institute for Polymers, Composites and BiomaterialsNational Council of ResearchPozzuoli, NaplesItaly
  2. 2.Department of Chemical, Materials and Production EngineeringUniversity of Naples Federico IINaplesItaly
  3. 3.Institute for Polymers, Composites and BiomaterialsNational Council of ResearchPortici, NaplesItaly

Personalised recommendations