Advertisement

Effect of Tool Pin Eccentricity on the Microstructure and Mechanical Properties of Friction Stir Processed Al-6061 Alloy

  • Yu ChenEmail author
  • He Wang
  • Hua Ding
  • Jingwei Zhao
  • Fenghe Zhang
  • Zhaohui Ren
Article
  • 67 Downloads

Abstract

Three different stir tools with the pin eccentricity of 0, 0.4 and 0.8 mm were applied to the friction stir processing (FSP) of Al-6061 alloy. Results show that the pin-affected zone (PAZ) enlarges and the grain size in the stir zone (SZ) decreases as the pin eccentricity increases. Moreover, the low peak FSP temperature induced by the pin eccentricity gives rise to the coarsening of strengthening precipitates in the SZ. Compared with the pin-eccentric FSP samples, the SZ produced without pin eccentricity exhibits the highest hardness and yield strength due to the high amount of fine precipitates. However, the application of pin eccentricity elevates the overall tensile properties of FSP samples through changing the failure location from heat-affected zone (HAZ) to SZ.

Keywords

aluminum alloy friction stir processing mechanical properties microstructure pin eccentricity 

Notes

Acknowledgments

The present study is financially supported by the Fundamental Research Funds for the Central Universities of China (Nos. N172410002-03, N180303029) and the Nature Science Foundation of Liaoning Province (No. 20180550058). Besides, one of the authors, Zhaohui Ren, gratefully acknowledges the financial supports from the National Science Foundation of China (No. 51475084) and National Support Program, National Key Research and Development (No. 2017YFB1103700).

References

  1. 1.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1–2), p 1–78CrossRefGoogle Scholar
  2. 2.
    H. Khodaverdizadeh, A. Heidarzadeh, and T. Saeid, Effect of Tool Pin Profile on Microstructure and Mechanical Properties of Friction Stir Welded Pure Copper Joints, Mater. Des., 2013, 45, p 265–270CrossRefGoogle Scholar
  3. 3.
    K.P. Mehta and V.J. Badheka, Influence of Tool Pin Design on Properties of Dissimilar Copper to Aluminum Friction Stir Welding, Trans. Nonferr. Metal. Soc., 2017, 27(1), p 36–54CrossRefGoogle Scholar
  4. 4.
    K. Elangovan and V. Balasubramanian, Influences of Tool Pin Profile and Welding Speed on the Formation of Friction Stir Processing Zone in AA2219 Aluminum Alloy, J. Mater. Process. Tech., 2008, 200(1–3), p 163–175CrossRefGoogle Scholar
  5. 5.
    K. Elangovan and V. Balasubramanian, Influences of Pin Profile and Rotational Speed of Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminum Alloy, Mater. Sci. Eng. A, 2007, 459(1–2), p 7–18CrossRefGoogle Scholar
  6. 6.
    K. Elangovan and V. Balasubramanian, Influences of Tool Pin Profile and Tool Shoulder Diameter on the Formation of Friction Stir Processing Zone in AA6061 Aluminum Alloy, Mater. Des., 2008, 29(2), p 362–373CrossRefGoogle Scholar
  7. 7.
    Y.Q. Mao, L.M. Ke, F.C. Liu, Q. Liu, C.P. Huang, and X. Li, Effect of Tool Pin Eccentricity on Microstructure and Mechanical Properties in Friction Stir Welded 7075 Aluminum Alloy Thick Plate, Mater. Des., 2014, 62, p 334–343CrossRefGoogle Scholar
  8. 8.
    L.H. Shah, S. Guo, S. Walbridge, and A. Gerlich, Effect of Tool Eccentricity on the Properties of Friction Stir Welded AA6061 Aluminum Alloy, Manuf. Lett., 2018, 15(A), p 14–17CrossRefGoogle Scholar
  9. 9.
    N. Martinez, N. Kumar, R.S. Mishra, and K.J. Doherty, Effect of Tool Dimensions and Parameters on the Microstructure of Friction Stir Welded Aluminum 7449 Alloy of Various Thicknesses, Mater. Sci. Eng. A, 2017, 684, p 470–479CrossRefGoogle Scholar
  10. 10.
    P. Dong, D.Q. Sun, and H.M. Li, Natural Aging Behavior of Friction Stir Welded 6005A-T6 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 576, p 29–35CrossRefGoogle Scholar
  11. 11.
    X.C. Liu and C.S. Wu, Elimination of Tunnel Defect in Ultrasonic Vibration Enhanced Friction Stir Welding, Mater. Des., 2016, 90, p 350–358CrossRefGoogle Scholar
  12. 12.
    G.R. Cui, Z.Y. Ma, and S.X. Li, Periodical Plastic Flow Pattern in Friction Stir Processed Al-Mg Alloy, Scr. Mater., 2008, 58(12), p 1082–1085CrossRefGoogle Scholar
  13. 13.
    T. Azimzadegan and S. Serajzadeh, An Investigation into Microstructures and Mechanical Properties of AA7075-T6 During Friction Stir Welding at Relatively High Rotational Speeds, J. Mater. Eng. Perform., 2010, 19(9), p 1256–1263CrossRefGoogle Scholar
  14. 14.
    A.R.S. Essa, M.M.Z. Ahmed, A.K.Y.A. Mohamed, and A.E. El-Nikhaily, An analytical Model of Heat Generation for Eccentricity Cylindrical Pin in Friction Stir Welding, J. Mater. Res. Technol., 2016, 5(3), p 234–240CrossRefGoogle Scholar
  15. 15.
    Y. Chen, H. Ding, J.Z. Li, Z.H. Cai, J.W. Zhao, and W.J. Yang, Influence of Multi-Pass Friction Stir Processing on the Microstructure and Mechanical Properties of Al-5083 Alloy, Mater. Sci. Eng. A, 2016, 650, p 281–289CrossRefGoogle Scholar
  16. 16.
    Y. Chen, H. Ding, Z.H. Cai, J.W. Zhao, and J.Z. Li, Effect of Initial Base Metal Temper on Microstructure and Mechanical Properties of Friction Stir Processed Al-7B04 Alloy, Mater. Sci. Eng. A, 2016, 650, p 396–403CrossRefGoogle Scholar
  17. 17.
    J.Q. Su, T.W. Nelso, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A, 2005, 405, p 277–286CrossRefGoogle Scholar
  18. 18.
    P.N. Rao, B. Viswanadh, and R. Jayaganthan, Effect of Cryorolling and Warm Rolling on Precipitation Evolution in Al 6061 Alloy, Mater. Sci. Eng. A, 2014, 606, p 1–10CrossRefGoogle Scholar
  19. 19.
    R.D. Fu, J.F. Zhang, Y.J. Li, J. Kang, H.J. Liu, and F.C. Zhang, Effect of Welding Heat Input and Post-Welding Natural Aging on Hardness of Stir Zone for Friction Stir-Welded 2024-T3 Aluminum Alloy Thin-Sheet, Mater. Sci. Eng. A, 2013, 559, p 319–324CrossRefGoogle Scholar
  20. 20.
    Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metall. Mater. Trans. A, 2002, 33(A), p 625–635CrossRefGoogle Scholar
  21. 21.
    Y. Chen, H. Ding, Z.H. Cai, J.W. Zhao, and J.Z. Li, Microstructural and Mechanical Characterization of a Dissimilar Friction Stir-Welded AA5083-AA7B04 Butt Joint, J. Mater. Eng. Perform., 2017, 26(2), p 530–539CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, B.L. Xiao, and Z.Y. Ma, Influence of Water Cooling on Microstructure and Mechanical Properties of Friction Stir Welded 2014Al-T6 Joints, Mater. Sci. Eng. A, 2014, 614, p 6–15CrossRefGoogle Scholar
  23. 23.
    H.L. Hao, D.R. Ni, N. Huang, D. Wang, B.L. Xiao, Z.R. Nie, and Z.Y. Ma, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Al-Mg-Er Alloy, Mater. Sci. Eng. A, 2013, 559, p 889–896CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yu Chen
    • 1
    Email author
  • He Wang
    • 2
  • Hua Ding
    • 2
  • Jingwei Zhao
    • 3
  • Fenghe Zhang
    • 1
  • Zhaohui Ren
    • 1
  1. 1.School of Mechanical Engineering and AutomationNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangPeople’s Republic of China
  3. 3.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations