Skip to main content

Advertisement

Log in

Brazing Oxide Dispersion-Strengthened Fe-Based Steels with a Cu-Based Filler Metal

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In a search for a high-performance joint, a Cu-based filler was developed to braze MGH956 alloy (Fe-20Cr-5Al-0.5Ti-0.5Y2O3, wt.%), and a reliable joint was obtained by assembly and welding under a high-purity argon atmosphere. The optimal joint was obtained by brazing at 1050 °C for 20 min. The microstructure, microhardness and tensile strength were investigated. The microhardness distribution across the joint was evaluated. The tensile strength of the joint mainly decreased linearly with an increase in test temperature in the range of room temperature (RT) to 700 °C. An interesting phenomenon was found: The joint strength at RT was 557.8 MPa and reached approximately 75% of the value of the base material. However, at 500 °C, the joint (428.7 MPa) achieved 95% of the strength of the base material (450.7 MPa). The fractography of a specimen tensile-tested at 500 °C indicates a higher percentage of intergranular fracture than that at RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki, High-Temperature Strength Characterization of Advanced 9Cr-ODS Ferritic Steels, Mater. Sci. Eng. A Struct., 2009, 510–511, p 115–120

    Article  Google Scholar 

  2. A. Chauhan, D. Litvinov, and J. Aktaa, High Temperature Tensile Properties and Fracture Characteristics of Bimodal 12Cr-ODS Steel, J. Nucl. Mater., 2016, 468, p 1–8

    Article  Google Scholar 

  3. Q. Zhu, Y. Lei, Y. Wang, W. Huang, B. Xiao, and Y. Ye, Effects of Arc-Ultrasonic on Pores Distribution and Tensile Property in TIG Welding Joints of MGH956 Alloy, Fusion Eng. Des., 2014, 89, p 2964–2970

    Article  Google Scholar 

  4. L. Commin, M. Rieth, V. Widak, B. Dafferner, S. Heger, H. Zimmermann, E. Materna-Morris et al., Characterization of ODS (Oxide Dispersion Strengthened) Eurofer/Eurofer Dissimilar Electron Beam Welds, J. Nucl. Mater., 2013, 442, p S552–S556

    Article  Google Scholar 

  5. C. Chen, A. Richter, R. Kögler, and L. Wu, Dual-Beam Irradiation of Friction Stir Spot Welding of Nanostructured Ferritic Oxide Dispersion Strengthened Alloy, J. Alloy. Compd., 2012, 536, p S194–S199

    Article  Google Scholar 

  6. B.W. Baker, T.R. McNelley, and L.N. Brewer, Grain Size and Particle Dispersion Effects on the Tensile Behavior of Friction Stir Welded MA956 Oxide Dispersion Strengthened Steel from Low to Elevated Temperatures, Mater. Sci. Eng. A Struct., 2014, 589, p 217–227

    Article  Google Scholar 

  7. W. Han, A. Kimura, N. Tsuda, H. Serizawa, D. Chen, H. Je, H. Fujii et al., Effects of Mechanical Force on Grain Structures of Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel, J. Nucl. Mater., 2014, 455, p 46–50

    Article  Google Scholar 

  8. L.N. Brewer, M.S. Bennett, B.W. Baker, E.A. Payzant, and L.M. Sochalski-Kolbus, Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956, Mater. Sci. Eng. A Struct., 2015, 647, p 313–321

    Article  Google Scholar 

  9. B.A. Kalin, V.T. Fedotov, O.N. Sevrjukov, A.N. Kalashnikov, A.N. Suchkov, A. Moeslang, and M. Rohde, Development of Brazing Foils to Join Monocrystalline Tungsten Alloys with ODS-EUROFER Steel, J. Nucl. Mater., 2007, 367–370, p 1218–1222. https://doi.org/10.1016/j.jnucmat.2007.03.222

    Article  Google Scholar 

  10. J. Reiser, P. Norajitra, and R. Ruprecht, Numerical Investigation of a Brazed Joint Between W-1%La2O3 and ODS EUROFER Components, Fusion Eng. Des., 2008, 83, p 1126–1130

    Article  Google Scholar 

  11. N. Oono, S. Noh, N. Iwata, T. Nagasaka, R. Kasada, and A. Kimura, Microstructures of Brazed and Solid-State Diffusion Bonded Joints of Tungsten with Oxide Dispersion Strengthened Steel, J. Nucl. Mater., 2011, 417, p 253–256. https://doi.org/10.1016/j.jnucmat.2011.04.004

    Article  Google Scholar 

  12. R.K. Saha, S. Wei, and T.I. Khan, A Comparison of Microstructural Developments in TLP Diffusion Bonds Made Using ODS Ni Alloy, Mater. Sci. Eng. A Struct., 2005, 406, p 319–327. https://doi.org/10.1016/j.msea.2005.07.002

    Article  Google Scholar 

  13. H. Noto, S. Ukai, and S. Hayashi, Transient Liquid-Phase Bonding of ODS Steels, J. Nucl. Mater., 2011, 417, p 249–252

    Article  Google Scholar 

  14. H. Noto, R. Kasada, A. Kimura, and S. Ukai, Grain Refinement of Transient Liquid Phase Bonding Zone Using ODS Insert Foil, J. Nucl. Mater., 2013, 442, p S567–S571

    Article  Google Scholar 

  15. T.I. Khan and E.R. Wallach, Transient Liquid-Phase Bonding of Ferritic Oxide Dispersion Strengthened Superalloy MA957 Using a Conventional Nickel Braze and a Novel Iron-Base Foil, J. Mater. Sci., 1995, 30, p 10

    Article  Google Scholar 

  16. T.I. Khan and A. Al-Badri, Reactive Brazing of Ceria to an ODS Ferritic Stainless Steel, J. Mater. Sci., 2003, 38, p 6

    Google Scholar 

  17. R.K. Roy, S. Singh, M.K. Gunjan, A.K. Panda, and A. Mitra, Joining of 304SS and Pure Copper by Rapidly Solidified Cu-Based Braze Alloy, Fusion Eng. Des., 2011, 86, p 452–455. https://doi.org/10.1016/j.fusengdes.2011.04.002

    Article  Google Scholar 

  18. H. Ates, M. Turker, and A. Kurt, Effect of Friction Pressure on the Properties of Friction Welded MA956 Iron-Based Superalloy, Mater. Des., 2007, 28, p 948–953

    Article  Google Scholar 

  19. K. Ishida and T. Nishizawa, The Co-Mn (Cobalt-Manganese) System, J. Phase Equilibria Diffus., 1990, 11, p 13

    Google Scholar 

  20. W. Zhang, Y. Du, L. Zhang, H. Xu, S. Liu, and L. Chen, Atomic Mobility, Diffusivity and Diffusion Growth Simulation for FCC Cu–Mn–Ni Alloys, Calphad, 2011, 35, p 367–375. https://doi.org/10.1016/j.calphad.2011.04.009

    Article  Google Scholar 

  21. K.P. Gupta, The Mn-Ni-Si (Manganese-Nickel-Silicon) System, J. Phase Equilibria Diffus., 2006, 27, p 529–534. https://doi.org/10.1361/154770306x136520

    Article  Google Scholar 

Download references

Acknowledgments

This topic of research was financed by the Research Project of Special Furnishment and Part (Grant No. XZJQ-B1120680), the Technology Program of Southern Power Grid Corporation (Grant No. GDKJ00000081) and the Research Foundation of State Key Laboratory of Advanced Welding and Joining (Grant No. AWJ-Z14-02).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, J., Diao, X. et al. Brazing Oxide Dispersion-Strengthened Fe-Based Steels with a Cu-Based Filler Metal. J. of Materi Eng and Perform 28, 2184–2191 (2019). https://doi.org/10.1007/s11665-019-04015-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04015-0

Keywords

Navigation