Skip to main content
Log in

Effect of Ti Modification on Microstructures and Properties of Carbidic Austempered Ductile Iron

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, we investigated the effect of titanium modification on microstructures and properties of carbidic austempered ductile iron (CADI) containing 3.72 wt.% C, 2.77 wt.% Si, and 0.51 wt.% Mn. The results showed that with the addition of 0.1 wt.% Ti, TiC particles were formed, and distributed in carbides and matrix. Microstructural observation indicated that the maximum diameter of graphite nodules decreased from 58 to 40 μm, and the shape of carbides transformed from network to fragmentation, which was related to the nucleation of the eutectic structure (γ + (Fe, Cr)3C) where TiC particles act as the nucleus. After isothermal quenching at 300 °C, the hardness of Ti-bearing CADI was 3.5 HRC higher than ordinary CADI, and the impact toughness was increased by 14.3%. Additionally, due to the decrease in exfoliation, the wear loss of Ti-bearing CADI was 14.8% lower than ordinary CADI during the block-on-ring wear test at the surface load of 300 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Laino, J.A. Sikora, and R.C. Dommarco, Development of Wear Resistant Carbidic Austempered Ductile Iron (CADI), Wear, 2008, 265, p 1–7

    Article  Google Scholar 

  2. M. Lagarde, A. Basso, J.A. Sikora, and R.C. Dommarco, Development and Characterization of a New Type of Ductile Iron with a Novel Multiphase Microstructure, ISIJ Int., 2011, 51, p 645–650

    Article  Google Scholar 

  3. S. Laino, J.A. Sikora, and R.C. Dommarco, Wear Behavior of CADI, Operating Under Different Tribosystems, ISIJ Int., 2010, 50, p 418–424

    Article  Google Scholar 

  4. H.Q. Cheng, H.G. Fu, J. Lin, and Y. Lei, Effect of Cr Content on Microstructure and Mechanical Properties of Carbidic Austempered Ductile Iron, Materialprufung, 2018, 60, p 31–39

    Google Scholar 

  5. K. Muhammad Yusof, B. Abdullah, M.F. Idham, and N.H. Saad, The Effects on Microstructure and Hardness of 0.28% Vanadium and 0.87% Nickel Alloyed Ductile Iron After Boronizing Process, Key Eng. Mater., 2017, 740, p 65–69

    Article  Google Scholar 

  6. A. Refaey and N. Fatahalla, Effect of Microstructure on Properties of ADI, and Low Alloyed Ductile Iron, J. Mater. Sci., 2003, 38, p 351–362

    Article  Google Scholar 

  7. C.F. Han, Y.F. Sun, Y. Wu, and Y.H. Ma, Effects of Vanadium and Austempering Temperature on Microstructure and Properties of CADI, Metall. Mater. Trans., 2015, 4, p 135–145

    Google Scholar 

  8. A.S.O. Pimentel and W.L. Guesser, Tratamento térmico de austêmpera em ferro fundido nodular com adições de nióbio e de cromo, Matéria, 2017, 2, p 22–28

    Google Scholar 

  9. C.F. Han, Q.Q. Wang, Y.F. Sun, and J. Li, Effects of Molybdenum on the Wear Resistance and Corrosion Resistance of Carbidic Austempered Ductile Iron, Metallogr. Microstruct. Anal., 2015, 4, p 298–304

    Article  Google Scholar 

  10. S. Laino, J. Sikora, and R.C. Dommarco, Advances in the Development of Carbidic ADI, Key Eng. Mater., 2011, 457, p 187–192

    Google Scholar 

  11. X. Sun, Y. Wang, D.Y. Li, C. Wang, X. Li, and Z.W. Zou, Solid Particle Erosion Behavior of Carbidic Austempered Ductile Iron Modified by Nanoscale Ceria Particles, Mater. Des., 2014, 10, p 367–374

    Article  Google Scholar 

  12. X. Sun, Y. Wang, D.Y. Li, and G. Wang, Modification of Carbidic Austempered Ductile Iron with Nano Ceria for Improved Mechanical Properties and Abrasive Wear Resistance, Wear, 2013, 301, p 116–121

    Article  Google Scholar 

  13. X.H. Zhi, J.Z. Liu, J.D. Xing, and S.Q. Ma, Effect of Cerium Modification on Microstructure and Properties of Hypereutectic High Chromium Cast Iron, Mater. Sci. Eng., A, 2014, 603, p 98–103

    Article  Google Scholar 

  14. J.T. Duan, Z.Q. Jiang, and H.G. Fu, Effect of RE-Mg Complex Modifier on Structure and Performance of High-Speed Steel Roll, J. Rare Earths, 2007, 25, p 259–263

    Article  Google Scholar 

  15. C. Wang, H. Hsu, and Q. Ma, Formation of Spheroidal Carbide in Vanadium White Cast Iron by Rare Earth Modification, Mater. Sci. Technol., 1990, 6, p 905–910

    Article  Google Scholar 

  16. K.S. Cho, I.K. Sang, S.S. Park, W.S. Choi, H.K. Moon, and H. Kwon, Effect of Ti Addition on Carbide Modification and the Microscopic Simulation of Impact Toughness in High-Carbon Cr-V tool steels, Metall. Mater. Trans. A, 2016, 47, p 1–7

    Google Scholar 

  17. E.J. Shin, B.S. Seong, Y.S. Han, K.P. Hong, C.H. Lee, and H.-J. Kang, Effect of Precipitate Size and Dispersion on Recrystallization Behavior in Ti-Added Ultra Low Carbon Steels, J. Appl. Cryst., 2010, 36, p 624–628

    Article  Google Scholar 

  18. A.S. Chaus, F.I. Rudnickii, M. Boháčik, and P. Úradník, Special Features of Microstructure of W-Mo High-Speed Steel Modified with Titanium Diboride, Met. Sci. Heat Treat., 2011, 52, p 575–580

    Google Scholar 

  19. R.J. Chung, X. Tang, D.Y. Li, B. Hinckley, and K. Dolman, Effects of Titanium Addition on Microstructure and Wear Resistance of Hypereutectic High Chromium Cast Iron Fe-25wt.%Cr-4wt.%C, Wear, 2009, 267, p 356–361

    Article  Google Scholar 

  20. H. Ding, S. Liu, H. Zhang, and J. Guo, Improving Impact Toughness of a High Chromium Cast Iron Regarding Joint Additive of Nitrogen and Titanium, Mater. Des., 2016, 90, p 958–968

    Article  Google Scholar 

  21. Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li, Influence of Cooling Rate on the Microstructure and Properties of a New Wear Resistant Carbidic Austempered Ductile Iron, Mater. Charact., 2012, 72, p 53–58

    Article  Google Scholar 

  22. W. Brandon, Carbidic Austempered Ductile Iron, Int. J. Metalcast., 2015, 9, p 73–75

    Article  Google Scholar 

  23. K.P. Surendra, B. Kuriachena, K. Nitin, and N. Raman, The Slurry Abrasive Wear Behaviour and Microstructural Analysis of A2024-SiC-ZrSiO4 Metal Matrix Composite, Ceram. Int., 2018, 44, p 6426–6432

    Article  Google Scholar 

  24. K. Nitin, S. Alok, K. Nripesh, and R.N.P. Choudhary, Structural, Electrical and Magnetic Properties of Eco-Friendly Complex Multiferroic Material: Bi(Co0.35Ti0.35Fe0.30)O3, Ceram. Int., 2019, 45, p 822–831

    Article  Google Scholar 

  25. ISO: ISO 16112:2006(E), Compacted (Vermicular) Graphite Cast Irons—Classification, ISO, 2006, p 15–16

  26. ASTM: ASTM A247-16A: Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings, ASTM, 2016, p 7–12

  27. J.C. Hernando, B. Domeij, D. González, J.M. Amieva, and A. Diószegi, New Experimental Technique for Nodularity and Mg Fading Control in Compacted Graphite Iron Production on Laboratory Scale, Metall. Mater. Trans. A, 2017, 48, p 5432–5441

    Article  Google Scholar 

  28. Y. Zhang, Y. Chen, and B. Shen, Investigation of Tribological Properties of Brake Shoe Materials Phosphorous Cast Iron with Different Graphite Morphologies, Wear, 1993, 166, p 179–186

    Article  Google Scholar 

  29. Q.S. Ma, Y.J. Li, and J. Wang, Effects of Ti Addition on Microstructure Homogenization and Wear Resistance of Wide-Band Laser Clad Ni60/WC Composite Coatings, Int. J. Refract. Met. Hard. Mater., 2017, 64, p 225–233

    Article  Google Scholar 

  30. Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, and H. Liu, Nanoparticle Decorated Anodes for Enhanced Current Generation in Microbial Electrochemical Cells, Biosens. Bioelectron., 2011, 26, p 1908–1912

    Article  Google Scholar 

  31. A. Likhite, P. Parhad, D.R. Peshwe, and S.U. Pathak, Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI), Int. Sch. Sci. Res. Innov., 2014, 8, p 510–513

    Google Scholar 

  32. A. Meena and M.E. Mansori, Study of Dry and Minimum Quantity Lubrication Drilling of Novel Austempered Ductile Iron (ADI) for Automotive Applications, Wear, 2010, 12, p 2412–2416

    Google Scholar 

  33. A. Meena and M.E. Mansori, Drilling Performance of Green Austempered Ductile Iron (ADI) Grade Produced by Novel Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2012, 59, p 9–19

    Article  Google Scholar 

  34. G. Straffelini, M. Pellizzari, and L. Maines, Effect on Sliding Speed and Contact Pressure on the Oxidative Wear of Austempered Ductile Iron, Wear, 2011, 270, p 714–719

    Article  Google Scholar 

  35. U.R. Kumari and P.P. Rao, Study of Wear Behaviour of Austempered Ductile Iron, J. Mater. Sci., 2009, 44, p 1082–1093

    Article  Google Scholar 

  36. K.H.Z. Gahr, Wear by Hard Particles, Tribol. Int., 1998, 31, p 587–596

    Article  Google Scholar 

  37. J.V. Giacchi, R.A. Martínez, M.M. Gamba, and R.C. Dommarco, Abrasion and Impact Properties of Partially Chilled Gray Iron, Wear, 2007, 262, p 282–291

    Article  Google Scholar 

  38. Y.L. Yi, J.D. Xing, Y.F. Lu, H.G. Fu, M.J. Wan, L.L. Yu, Q.L. Zheng, and C. Ya, Investigations on Microstructure, Mechanical Properties and Abrasion Resistance of 4 wt.%Cr-2 wt.%Mn-2 wt.%Cu-Fe-B Alloy, Mater. Charact., 2018, 137, p 222–230

    Article  Google Scholar 

  39. Y.F. Zhou, Y.L. Yang, J. Yang, F.F. Hao, D. Li, X.J. Ren, and Q.X. Yang, Effect of Ti Additive on (Cr, Fe)7C3 Carbide in Arc Surfacing Layer and Its Refined Mechanism, Appl. Surf. Sci., 2012, 258, p 6653–6659

    Article  Google Scholar 

  40. H.C. Li, Z.Y. Jiang, A.K. Tieu, W.H. Sun, and D.B. Wei, Experimental Study on Wear and Friction of Work Roll Material with 4% Cr and Added Ti in Cold Rolling, Wear, 2011, 9, p 2500–2511

    Article  Google Scholar 

  41. A. Bedolla-Jacuinde, F.V. Guerra, I. Mejía, J. Zuno-Silva, and M. Rainforth, Abrasive Wear of V-Nb-Ti Alloyed High-Chromium White Irons, Wear, 2015, 6, p 1006–1011

    Article  Google Scholar 

  42. Y. Gao, Z. Lv, S. Sun, M. Qu, Z. Shi, R. Zhang, and W. Fu, First Principles Study on Surface Structure and Stability of Alloyed Cementite Doped with Cr, Mater. Lett., 2013, 100, p 170–172

    Article  Google Scholar 

  43. B. Tololi and A. Hellawell, Phase Separation and Undercooling in Al-Si Eutectic Alloy—the Influence of Freezing Rate and Temperature Gradient, Acta Metall., 1976, 24, p 565–573

    Article  Google Scholar 

  44. S.Z. Lu and A. Hellawell, Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms, JOM, 1995, 2, p 38–40

    Article  Google Scholar 

  45. B.L. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, Metall. Mater. Trans. B, 1970, 1, p 1987–1990

    Article  Google Scholar 

  46. Y.H. Qu, J.D. Xing, X.H. Zhi, J.Y. Peng, and H.G. Fu, Effect of Cerium on the As-Cast Microstructure of a Hypereutectic High Chromium Cast Iron, Mater. Lett., 2008, 62, p 3024–3027

    Article  Google Scholar 

  47. X. Yun, Y. Zhou, J. Yang, X. Xing, X. Ren, Y.L. Yang, and Q.X. Yang, Refinement of Nano-Y2O3 on Microstructure of Hypereutectic Fe-Cr-C Hardfacing Coatings, J. Rare Earths, 2015, 33, p 671–678

    Article  Google Scholar 

  48. Y. Zhou, Y. Yang, J. Yang, F. Hao, D. Li, X. Ren, and Q.X. Yang, Effect of Ti Additive on (Cr, Fe)7C3 Carbide in Arc Surfacing Layer and Its Refined Mechanism, Appl. Surf. Sci., 2012, 258, p 6653–6659

    Article  Google Scholar 

  49. Z. Shi, S. Liu, Y. Gao, Y. Zhou, X. Xing, X. Ren, and Q.X. Yang, Mechanism of Y2O3 as Heterogeneous Nucleus of TiC in Hypereutectic Fe-CrC-Ti-Y2O3 Coating: First Principle Calculation and Experiment Research, Mater. Today Commun., 2017, 13, p 80–91

    Article  Google Scholar 

  50. Z. Ni, Y. Sun, F. Xue, J. Bai, and Y. Lu, Microstructure and Properties of Austenitic Stainless Steel Reinforced With In Situ TiC Particulate, Mater. Des., 2011, 32, p 1462–1467

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under Grant (51775006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanguang Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Fu, H., Nan, R. et al. Effect of Ti Modification on Microstructures and Properties of Carbidic Austempered Ductile Iron. J. of Materi Eng and Perform 28, 2335–2347 (2019). https://doi.org/10.1007/s11665-019-03986-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03986-4

Keywords

Navigation