Skip to main content

Advertisement

Log in

Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The atmospheric corrosion of metals is a severe problem in marine environments. However, the effects of SO2 and NaCl on the atmospheric corrosion of Q235 steel have not been widely studied. In the present work, electrochemical impedance spectroscopy was conducted to exploit the initial corrosion properties of Q235 in simulated atmospheric environments containing different contents of SO2 and NaCl. The solution resistance (Rs) and polarization resistance (Rp) of electrodes covered with pre-deposited NaCl were continuously monitored. The results showed that both SO2 and NaCl promoted the corrosion rate of Q235 steel. The pre-deposited NaCl maintained the moisture of the metal surface to ensure continued corrosion. The thickness of the electrolyte layer on the metal surface decreased with increasing SO2 content. A thin electrolyte layer could increase the Cl concentration and reduce the pH value of the layer. The thin electrolyte layer could also promote the mass transfer of oxygen, thereby accelerating the cathodic reduction reaction. However, the NaCl content played a more important role than that of SO2 in the simulated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.R. Hou, X.G. Li, X.M. Ma, C.W. Du, D.W. Zhang, M. Zheng, W.C. Xu, D.Z. Lu, and F.B. Ma, The Cost of Corrosion in China, NPJ Mater. Degrad., 2017, 1, p 1

    Article  Google Scholar 

  2. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials Science: Share Corrosion Data, Nature, 2015, 527(7579), p 441–442

    Article  CAS  Google Scholar 

  3. M.E. Boan, A. Rodríguez, C.M. Abreu, and C.A. Echeverría, Unraveling the Impact of Chloride and Sulfate Ions Collection on Atmospheric Corrosion of Steel, Corrosion, 2013, 69(12), p 1217–1224

    Article  CAS  Google Scholar 

  4. E. Kusmierek and E. Chrzescijanska, Atmospheric Corrosion of Metals in Industrial City Environment, Data Br., 2015, 3, p 149–154

    Article  Google Scholar 

  5. W.J. Chen, L. Hao, J.H. Dong, and W. Ke, Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere, Corros. Sci., 2014, 83, p 155–163

    Article  CAS  Google Scholar 

  6. H.C. Ma, Z.Y. Liu, C.W. Dua, X.G. Li, and Z.Y. Cui, Comparative Study of the SCC Behavior of E690 Steel and Simulated HAZ Microstructures in a SO2-Polluted Marine Atmosphere, Mater. Sci. Eng., A, 2016, 650, p 93–101

    Article  CAS  Google Scholar 

  7. J. Alcantara, D. Fuente, B. Chico, J. Simancas, I. Diaz, and M. Morcillo, Marine Atmospheric Corrosion of Carbon Steel: A Review, Materials, 2017, 10(4), p 406

    Article  CAS  Google Scholar 

  8. D.D.N. Singh, S. Yadav, and J.K. Saha, Role of Climatic Conditions on Corrosion Characteristics of Structural Steels, Corros. Sci., 2008, 50(1), p 93–110

    Article  CAS  Google Scholar 

  9. I.M. Allam, J.S. Arlow, and H. Saricimen, Initial Stages of Atmosphere Corrosion of Steel in the Arabian Gulf, Corros. Sci., 1991, 32(4), p 417–432

    Article  CAS  Google Scholar 

  10. Q. Qu, C.W. Yan, L. Zhang, Y. Wan, and C.N. Cao, Influence of NaCl Deposition on Atmospheric Corrosion of A3 Steel, J. Mater. Sci. Technol., 2002, 18(6), p 552–555

    CAS  Google Scholar 

  11. B. Lin, R.G. Hu, C.Q. Ye, Y. Li, and C.J. Lin, A Study on the Initiation of Pitting Corrosion in Carbon Steel in Chloride-Containing Media Using Scanning Electrochemical Probes, Electrochim. Acta, 2010, 55(22), p 6542–6545

    Article  CAS  Google Scholar 

  12. A.P. Yadav, A. Nishikata, and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet–Dry Conditions—Influence of Time of Wetness, Corros. Sci., 2004, 46(1), p 169–181

    Article  CAS  Google Scholar 

  13. T. Zhang, C.M. Chen, Y.W. Shao, G.Z. Meng, F.H. Wang, X.G. Li, and C.F. Dong, Corrosion of Pure Magnesium Under Thin Electrolyte Layers, Electrochim. Acta, 2008, 53(27), p 7921–7931

    Article  CAS  Google Scholar 

  14. A.P. Yadav, A. Nishikata, and T. Tsuru, Oxygen Reduction Mechanism on Corroded Zinc, J. Electroanal. Chem., 2005, 585(1), p 142–149

    Article  CAS  Google Scholar 

  15. M. Sun, K. Xiao, C.F. Dong, X.G. Li, and P. Zhong, Electrochemical and Initial Corrosion Behavior of Ultrahigh Strength Steel by Scanning Kelvin Probe, J. Mater. Eng. Perform., 2012, 22(3), p 815–822

    Article  CAS  Google Scholar 

  16. C. Pan, W. Han, Z.Y. Wang, C. Wang, and G.C. Yu, Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere, J. Mater. Eng. Perform., 2016, 25(12), p 5382–5390

    Article  CAS  Google Scholar 

  17. J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The Corrosion Mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres, Mater. Chem. Phys., 1997, 47(1), p 1–8

    Article  CAS  Google Scholar 

  18. Y. Shi, E. Tada, and A. Nishikata, A Method for Determining the Corrosion Rate of a Metal Under a Thin Electrolyte Film, J. Electrochem. Soc., 2015, 162(4), p C135–C139

    Article  CAS  Google Scholar 

  19. L.G. Bland, L.C. Scully, and J.R. Scully, Assessing the Corrosion of Multi-Phase Mg-Al Alloys with High Al Content by Electrochemical Impedance, Mass Loss, Hydrogen Collection, and Inductively Coupled Plasma Optical Emission Spectrometry Solution Analysis, Corrosion, 2017, 73(5), p 526–543

    Article  CAS  Google Scholar 

  20. C. Pan, W.Y. Lv, Z.Y. Wang, W. Su, C. Wang, and S.N. Liu, Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere, J. Mater. Sci. Technol., 2017, 33(6), p 587–595

    Article  Google Scholar 

  21. S. Feliu and I. Llorente, Corrosion Product Layers on Magnesium Alloys AZ31 and AZ61: Surface Chemistry and Protective Ability, Appl. Surf. Sci., 2015, 347, p 736–746

    Article  CAS  Google Scholar 

  22. G.A. El-Mahdy, A. Nishikata, and T. Tsuru, Electrochemical Corrosion Monitoring of Galvanized Steel Under Cyclic Wet-Dry Conditions, Corros. Sci., 2000, 42, p 183–194

    Article  CAS  Google Scholar 

  23. A.P. Yadav, A. Nishikata, and T. Tsuru, Degradation Mechanism of Galvanized Steel in Wet–Dry Cyclic Environment Containing Chloride Ions, Corros. Sci., 2004, 46(2), p 361–376

    Article  CAS  Google Scholar 

  24. Y. Tsutsumi, A. Nishikata, and T. Tsuru, Monitoring of Rusting of Stainless Steels in Marine Atmospheres Using Electrochemical Impedance Technique, J. Electrochem. Soc., 2006, 153(7), p B278

    Article  CAS  Google Scholar 

  25. J.F. Young, Humidity Control in the Laboratory Using Salt Solutions—A Review, J. Appl. Chem., 1967, 1967(17), p 241–245

    Google Scholar 

  26. C. Somphotch, H. Hayashibara, A. Ooi, E. Tada, and A. Nishikata, Corrosion Behavior of Zinc Under Thin Solution Films of Different Thicknesses, J. Electrochem. Soc., 2018, 165(9), p C590–C600

    Article  CAS  Google Scholar 

  27. R.P.V. Cruz, A. Nishikata, and T. Tsuru, AC Impedance Monitoring of Pitting Corrosion of Stainless Steel Under a Wet-Dry Cyclic Condition in Chloride-Containing Environment, Corros. Sci., 1996, 38(8), p 1397–1406

    Article  Google Scholar 

  28. E. Schindelholz and R.G. Kelly, Wetting Phenomena and Time of Wetness in Atmospheric Corrosion: A Review, Corros. Rev., 2012, 30(5–6), p 135–170

    CAS  Google Scholar 

  29. N. Sato, Electrochemistry at Metal and Semiconductor Electrodes Electric Double Layer at Electrode Interfaces, Elsevier, Amsterdam, 1998

    Google Scholar 

  30. J.B. Zhang, J. Wang, and Y.H. Wang, Electrochemical Investigations of Micro-Droplets Formed on Metals During the Deliquescence of Salt Particles in Atmosphere, Electrochem. Commun., 2005, 7(4), p 443–448

    Article  CAS  Google Scholar 

  31. T. Tsuru, K.I. Tamiya, and A. Nishikata, Formation and Growth of Micro-Droplets During the Initial Stage of Atmospheric Corrosion, Electrochim. Acta, 2004, 49(17–18), p 2709–2715

    Article  CAS  Google Scholar 

  32. G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, and M. Wicinski, Potential Control Under Thin Aqueous Layers Using a Kelvin Probe, Corros. Sci., 2007, 49(4), p 2021–2036

    Article  CAS  Google Scholar 

  33. J.H. Wang, F.I. Wei, and H.C. Shih, Electrochemical Studies of the Corrosion Behavior of Carbon and Weathering Steels in Alternating Wet/Dry Environments with Sulfur Dioxide Gas, Corros. Sci., 1996, 52(8), p 600–608

    Article  CAS  Google Scholar 

  34. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, In Situ Observation of Initial Rust Formation Process on Carbon Steel Under Na2SO4 and NaCl Solution Films with Wet/Dry Cycles Using Synchrotron Radiation X-Rays, Corros. Sci., 2005, 47, p 2492–2498

    Article  CAS  Google Scholar 

  35. W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, and D.W. Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-Dry Cyclic Marine Environments, Mater. Sci. Eng., A, 2017, 710(5), p 318–328

    Google Scholar 

  36. H. Antony, S. Perrin, P. Dillmann, L. Legrand, and A. Chaussé, Electrochemical Study of Indoor Atmospheric Corrosion Layers Formed on Ancient Iron Artefacts, Electrochim. Acta, 2007, 52, p 7754–7759

    Article  CAS  Google Scholar 

  37. S.X. Li and L.H. Hihara, In Situ Raman Spectroscopic Study of NaCl Particle-Induced Marine Atmospheric Corrosion of Carbon Steel, J. Electrochem. Soc., 2012, 159(4), p C147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the project of CAS Strategic Priority Project (XDA13040404), Shandong Key Laboratory of Corrosion Science and Shandong Key Research and Development Program (2016GGH4511). The authors are grateful for the guidance of Professor Tooru Tsuru in the instrument monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiutong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Wang, L. et al. Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl. J. of Materi Eng and Perform 28, 2327–2334 (2019). https://doi.org/10.1007/s11665-019-03984-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03984-6

Keywords

Navigation