Skip to main content
Log in

Effect of Annealing Treatment on Mechanical and Magnetic Softening Behaviors of Cold Rolled Interstitial-Free Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The recovery and recrystallization behaviors of low-carbon interstitial-free steel are investigated at different annealing temperatures (200-690 °C) through correlation between the changes in magnetic parameters (coercivity and r.m.s. voltage), hardness, tensile strength and high-angle grain boundary fractions (HAB). Magnetic parameters and tensile strength show a significant change within recovery region (200-500 °C), while the hardness variation is very minimal at this temperature region. On the other hand, the hardness is abruptly changed compared to magnetic properties at higher annealing temperature (550-640 °C). The grain boundary characteristics and microtexture evolution occurring at recrystallization regime are evaluated by orientation imaging microscopy (OIM) and orientation distribution function (ODF) through electron backscattered diffraction (EBSD). The increase in recrystallization fraction noticeably affects microtexture property, justifying with the strengthening of γ-fiber, weakening of α-fiber and disappearance of rotated cube component with increasing annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. K. Ray, J. J. Jonas, R. E. Hook, Cold Rolling and Annealing Textures in Low Carbon and Extra Low Carbon Steels, Int. Mat. Rev., 1994, 39, No.4

  2. A. Haldar, S. Suwas, and D. Bhattacharjee, Microstructure and Texture in Steels, Springer, India, 2008

    Google Scholar 

  3. D.P. Field and H. Weiland, Characterization of Deformed Microstructures, Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, and B.L. Adams, Eds., Springer, Boston, MA, 2000

    Google Scholar 

  4. C.E.R. Torres, F.H. Sanchez, A. Gonzalez, F. Actis, and R. Herreara, Study of the Kinetics of the Recrystallization of Cold-Rolled Low-Carbon Steel, Metall. Mater. Trans. A., 2002, 33, p 25-31

    Article  Google Scholar 

  5. J.P. Ferrer, T. De Cock, C. Capdevila, F.G. Caballero, and C.G. de Andres, Comparison of the Annealing Behaviour Between Cold and Warm Rolled ELC Steels by Thermoelectric Power Measurement, Acta. Mater., 2007, 55, p 2075-2083

    Article  Google Scholar 

  6. J.F.C. Lins, H.R.Z. Sandim, and H.J. Kestenbach, Microstructural and Textural Characterization of a Hot-Rolled IF Steel, J. Mater. Sci., 2007, 42, p 6572-6577

    Article  Google Scholar 

  7. A. Desalvo and F. Zignani, Electrical Resistivity Study of Recovery Phenomena in Cold-Worked Zirconium, J. Nuclr. Mater., 1966, 20, p 108-118

    Article  Google Scholar 

  8. R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, and A. Moslang, X-ray Evaluation of Dislocation Density in ODS-Eurofer steel, Mater. Sci. Eng. A., 2012, 534, p 142-146

    Article  Google Scholar 

  9. E. Akbari, K. K. Taheri, A. K. Taheri, The Effect of Prestrain Temperature on Kinetics of Static Recrystallization, Microstructure Evolution, and Mechanical Properties of Low Carbon Steel, J. Mater. Eng. Perform., 2018, https://doi.org/10.1007/s11665-018-3328-4

  10. J. Degauque, B. Astie, J.L. Porteseil, and R. Vergne, Influence of the Grain Size on the Magnetic and Magnetomechanical Properties of High-Purity Iron, J. Magn. Magn. Mater., 1982, 26, p 261-263

    Article  Google Scholar 

  11. V.E. Iordache, E. Hug, and N. Buiron, Magnetic Behaviour Versus Tensile Deformation Mechanisms in a Non-oriented Fe–(3 wt.%)Si Steel, Mater. Sci. Eng. A, 2003, 359, p 62-74

    Article  Google Scholar 

  12. J.N. Mohapatra, S. Kumar, A. Akela, S.P. Rao, and M. Kaza, Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels, J. Mater. Eng. Perform, 2016, 25(6), p 2318-2325

    Article  Google Scholar 

  13. H. Kumar, J.N. Mohapatra, R.K. Roy, R.J. Joseyphus, and A. Mitra, Evaluation of Tempering Behaviour in Modified 9Cr–1Mo Steel by Magnetic Non-destructive Techniques, J. Mat. Eng Proc. Tech., 2010, 210, p 669-674

    Article  Google Scholar 

  14. M.S.C. Bose, A Study of Fatigue in Ferromagnetic Materials Using a Magnetic Hysteresis Technique, NDT Int., 1986, 19(20), p 83-87

    Article  Google Scholar 

  15. D.C. Jiles, Magnetic Properties and Microstructure of AISI, 1000 Series Carbon Steels, J. Phys., 1988, 21, p 1186-1195

    Google Scholar 

  16. V.F. Novikov, Temperature Dependence of the Coercive Force of Deformed Silicon Iron Crystals, Soviet Phy. J., 1968, 11(2), p 16-19

    Google Scholar 

  17. A. Martinez-de-Guerenu, K. Gurruchaga, and F. Arizti, Nondestructive Characterization of Recovery and Recrystallization in Cold Rolled Low Carbon Steel by Magnetic Hysteresis Loops, J. Mag. Magn. Mater., 2007, 316, p 842-845

    Article  Google Scholar 

  18. R.A. Renzetti, H.R.Z. Sandim, M.J.R. Sandim, A.D. Santos, A. Moslang, and D. Raabe, Annealing Effects on Microstructure and Coercive Field of Ferritic–Martensitic ODS Eurofer Steel, Mater. Sci. Engg. A., 2011, 528, p 1442-1447

    Article  Google Scholar 

  19. A. Martinez-de-Guerenu, M. Oyarzabal, F. Arizti, and I. Gutierrez, Application of Coercive Field Measurements to the Evaluation of Recovery and Recrystallization in Cold Rolled Interstitial Free (IF) Steel, Mater. Sci. Forum, 2005, 500-501, p 647-654

    Article  Google Scholar 

  20. M. Oyarzabal, K. Gurruchaga, A. Martinez-DE-Guerenu, and I. Gutierrez, Sensitivity of Conventional and Non-destructive Characterization Techniques to Recovery and Recrystallization, ISIJ Int., 2007, 47, p 1458-1464

    Article  Google Scholar 

  21. A. Martinez-de-Guerenu, D. Jorge-Badiola, and I. Gutierrez, Assessing the Recovery and Recrystallization Kinetics of Cold Rolled Microalloyed Steel Through Coercive Field Measurements, Mater. Sci. Eng. A., 2017, 691, p 42-50

    Article  Google Scholar 

  22. M. Shirdel, H. Mirzadeh, and M.H. Parsa, Estimation of the Kinetics of Martensitic Transformation in Austenitic Stainless Steels by Conventional and Novel Approaches, Mater. Sci. Eng. A., 2015, 624, p 256-260

    Article  Google Scholar 

  23. G. Vertes, I. Meszaros, and I. Tomas, Nondestructive Magnetic Characterization of TRIP Steels, NDT&E Int., 2013, 54, p 107-114

    Article  Google Scholar 

  24. S. Yamaura, Y. Furuya, and T. Watanabe, The Effect of Grain Boundary Microstructure on Barkhausen Noise in Ferromagnetic Materials, Acta Mater., 2001, 49, p 3019-3027

    Article  Google Scholar 

  25. S. White, T. Krause, and L. Clapham, Control of Flux in Magnetic Circuits for Barkhausen Noise Measurements, Meas. Sci. Technol., 2007, 18, p 3501-3510

    Article  Google Scholar 

  26. Kizkitza Gurruchaga, Ane Martinez-de-Guerenu, Miguel Soto, and Fernando Arizti, Efficacy of Magnetic Inductive Parameters for Annealing Characterization of Cold Rolled Low Carbon Steel, IEEE Trans., 2008, 44(11), p 3839-3842

    Google Scholar 

  27. M. Blaow and A. Shaw, Evaluation of Annealing Stages in Low Carbon Steel Using Magnetic Barkhausen Noise, IJEIT., 2014, 1, p 1

    Google Scholar 

  28. J. Won Byeon and S.I. Kwun, Magnetic Nondestructive Evaluation of Thermally Degraded 2.25Cr–1Mo steel, Mater. Lett., 2003, 58, p 94-98

    Article  Google Scholar 

  29. A. Mitra, J.N. Mohapatra, J. Swaminathan, M. Ghosh, A.K. Panda, and R.N. Ghosh, Magnetic Evaluation of Creep in Modified 9Cr–1Mo Steel, Scr. Mater., 2007, 57, p 813-816

    Article  Google Scholar 

  30. J.C. Sancheza, M.A. Camposa, and L.R. Padovese, Magnetic Barkhausen Measurements for Evaluating the Formation of Luders Bands in Carbon Steel, NDT&E Intel, 2007, 40, p 520-524

    Article  Google Scholar 

  31. A. Martinez-de-Guerenu, F. Ariztia, M. Dıaz-Fuentes, and I. Gutierrez, Recovery During Annealing in Cold Rolled Low Carbon Steel, Part I: Kinetics and Microstructural Characterization, Acta Mater., 2004, 52, p 3657-3664

    Article  Google Scholar 

  32. R. K. Roy, S. Dutta, A.K. Panda, V. Rajinikanth, S. K. Das, A. Mitra, M. Strangwood and C. L. Davis, Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterization, phil Mag., 2018, 98, p 21

  33. I. Thomas, S. Zaefferer, and D. Rabbe, High Resolution EBSD Investigation of Deformed and Partially Recrystallized IF Steel, Adv. Eng. Mater., 2003, 5(7), p 566-570

    Article  Google Scholar 

  34. D.I.K. Kim, K.H. Oh, and H.C. Lee, Statistical Analysis on the Development of Recrystallization Texture in IF Steel, Mat.sci.forum, 2002, 408, p 839-844

    Article  Google Scholar 

  35. H. Mirzadeha, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A., 2012, 538, p 236-245

    Article  Google Scholar 

  36. H. Jazaeri and F.J. Humphreys, Quantifying Recrystallization by Electron Backscatter Diffraction, J. Microsc., 2004, 213, p 241-246

    Article  Google Scholar 

  37. R.J. Maccabe and D.F. Teter, Analysis of Recrystallized Volume Fractions in Uranium Using Electron Backscatter Diffraction, J. Microsc., 2006, 223, p 33-39

    Article  Google Scholar 

  38. R.K. Roy, A.K. Panda, and A. Mitra, An electromagnetic sensing device for microstructural Phase determination of steels through non-destructive evaluation, proceeding of 6th Int. Conf. Sensing Technology (ICST 2012), Kolkata, India, 18-21 Dec., IEEE Xplore, 2012, p.226-229

  39. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, UK, 2004

    Google Scholar 

  40. V. Randle, O. Engler, Introduction to Texture Analysis Macrotexture, Microtexture and Orientation mapping. 2000

  41. R.K. Lucke, Texture and Microstructure of Hot Rolled Steel, Scr. Metallurg. Mater. (texture), 1992, 26, p 1221-1226

    Article  Google Scholar 

  42. Y.B. Park, D.N. Lee, and G. Gottstein, Evolution of Recrystallisation Textures from Cold Rolling Textures in Interstitial Free Steel, Mat. Sci Tech., 1997, 13, p 289

    Article  Google Scholar 

  43. A.S. Meziou, A.L.H. Etter, and T. Baudin, Comparison Between Recrystallization Mechanisms in Copper and Ti-IF Steel After a Low Amount of Deformation, Mater Sci Eng A., 2011, 528, p 3829-3832

    Article  Google Scholar 

  44. M. Kupferling, F. Fiorillo, V. Basso, G. Bertotti, and P. Meilland, Barkhausen Noise in Plastically Deformed Low-Carbon Steels, J. Magn. Magn. Mater., 2008, 320, p e527-e530

    Article  Google Scholar 

  45. P. Gaunt, Ferromagnetic Domain Wall Pinning by a Random Array of in Homogeneities, Phil. Mag. B., 1983, 48, p 261-276

    Article  Google Scholar 

  46. B.T.Hailer, Effect of Heat Treatment on Magnetic and Mechanical Properties of an Iron-Cobalt-Vanadium-Niobium Alloy., 2001

  47. Jian Wang, Jun Li, Xiaochuan Mi, Shengen Zhang, and Alex A. Volinsky, Rapid Annealing Effects on Microstructure, Texture, and Magnetic Properties of Non-oriented Electrical Steel, Met. Mate Int., 2012, 3, p 531-537

    Article  Google Scholar 

  48. H. Jazaeri and F.J. Humphreys, Quantifying Recrystallization by Electron Backscatter Diffraction, J. Microsc., 2004, 213, p 241-246

    Article  Google Scholar 

  49. H. Kikuchi, F. Ito, T. Murakami, and K. Takekawa, Relationship Between Magnetic Properties and Hardness and its Effect on Recovery and Recrystallization in Cold-Rolled Steel, IEEE Trans. Magn., 2015, 51, p 11

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur, for his permission to publish the paper. The financial assistance to one of the authors (Siuli Dutta) by council of Scientific and Industrial Research, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat K. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Rajinikanth, V., Panda, A.K. et al. Effect of Annealing Treatment on Mechanical and Magnetic Softening Behaviors of Cold Rolled Interstitial-Free Steel. J. of Materi Eng and Perform 28, 2228–2236 (2019). https://doi.org/10.1007/s11665-019-03953-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03953-z

Keywords

Navigation