Elastic Modulus Estimation for Copper Syntactic Foams Reinforced with Iron Hollow Spheres of Different Wall Thicknesses


The present study estimates the effect on Young’s modulus of the percentage and thickness of iron hollow spheres reinforcing copper syntactic foams. The resulting materials were modeled by inserting hollow spheres in a random arrangement, using a combination of Discrete Element Method (DEM) for generating the sphere location coordinates and Finite Element Analysis (FEA). Estimations for syntactic foams were compared to those obtained for conventional copper foams with the same porosity. Results showed that the elastic modulus of both syntactic and conventional foams drops significantly as the percentage of spheres or porosity increases. Furthermore, the increase in the wall thickness of the iron hollow spheres leads to significant rises in the Young’s modulus. Depending on the desired mechanical properties, the outcomes presented in this work could be used for selecting the kind of foam (syntactic or conventional) and predesign some characteristics such as porosity or thickness of the spheres or pores.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater. Sci., 2001, 46, p 559–632

    CAS  Article  Google Scholar 

  2. 2.

    M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: A Design Guide, 1st ed., Butterworth-Heinemann, Ed., Woburn, 2000, p 1–447

    Google Scholar 

  3. 3.

    A.E. Belhadj, A. Gavrus, F. Bernard, and M. Azzaz, Mechanical and Numerical Analysis Concerning Compressive Properties of Tin-Lead Open-Cell Foams, J. Mater. Eng. Perform., 2015, 24, p 4140–4155

    CAS  Article  Google Scholar 

  4. 4.

    M. Yu, P. Zhu, and Y. Ma, Effects of Particle Clustering on the Tensile Properties and Failure Mechanisms of Hollow Spheres Filled Syntactic Foams: A Numerical Investigation by Microstructure Based Modeling, Mater. Des., 2013, 47, p 80–89

    CAS  Article  Google Scholar 

  5. 5.

    W.S. Sanders and L.J. Gibson, Mechanics of Hollow Sphere Foam, Mater. Sci. Eng. A, 2003, 34, p 770–785

    Google Scholar 

  6. 6.

    I.N. Orbulov and J. Ginsztler, Compressive Characteristics of Metal Matrix Syntactic Foams, Compos. Part A, 2012, 43, p 553–561

    CAS  Article  Google Scholar 

  7. 7.

    A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I.N. Orbulov, Compressive Behaviour of Aluminium Matrix Syntactic Foams Reinforced by Iron Hollow Spheres, Mater. Des., 2015, 83, p 230–237

    CAS  Article  Google Scholar 

  8. 8.

    X. Xue, L. Wang, M. Wang, W. Lü, and D. Zhang, Manufacturing, Compressive Behaviour and Elastic Modulus of Ti matrix Syntactic Foam Fabricated by Powder Metallurgy, Trans. Nonferr. Met. Soc. China, 2012, 22, p s188–s192

    Article  Google Scholar 

  9. 9.

    X.F. Tao, L.P. Zhang, and Y.Y. Zhao, Al Matrix Syntactic Foam Fabricated with Bimodal Ceramic Microspheres, Mater. Des., 2009, 30, p 2732–2736

    CAS  Article  Google Scholar 

  10. 10.

    F.V. Antunes, J.A.M. Ferreira, and C. Capela, Numerical Modelling of the Young’s Modulus of Syntactic Foams, Finite Elem. Anal. Des., 2011, 47, p 78–84

    Article  Google Scholar 

  11. 11.

    P.K. Rohatgi, N. Gupta, B.F. Schultz, and D.D. Luong, The Synthesis, Compressive Properties, and Applications of Metal Matrix Syntactic Foams, JOM, 2011, 63, p 36–42

    CAS  Article  Google Scholar 

  12. 12.

    L.F. Nielsen, Elasticity and Damping of Porous Materials and Impregnated Materials, J. Am. Ceram. Soc., 1984, 1984(67), p 93–98

    Article  Google Scholar 

  13. 13.

    H.X. Zhu, J.F. Knott, and N.J. Mills, Analysis of the Elastic Properties of Open-Cell Foams with Tetrakaidecahedral Cells, J. Mech. Phys. Solids, 1997, 45, p 319–343

    Article  Google Scholar 

  14. 14.

    A. Hasan, An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams, Adv. Mater. Sci. Eng., 2010, 2010, p 1–12

    Article  Google Scholar 

  15. 15.

    D. Meric and H. Gedikli, Energy Absorption Behavior of Tailor-Welded Tapered Tubes Under Axial Impact Loading Using Coupled FEM/SPH Method, Thin-Walled Struct., 2016, 104, p 17–33

    Article  Google Scholar 

  16. 16.

    M. Kırca, A. Gul, E. Ekinci, F. Yardım, and A. Mugan, Computational Modeling of Micro-cellular Carbon Foams, Finite Elem. Anal. Des., 2007, 44, p 45–52

    Article  Google Scholar 

  17. 17.

    J.H. Cadena, I. Alfonso, J.H. Ramírez, V. Rodríguez-Iglesias, I.A. Figueroa, and C. Aguilar, Improvement of FEA Estimations for Compression Behavior of Mg Foams Based on Experimental Observations, Comput. Mater. Sci., 2014, 91, p 359–363

    CAS  Article  Google Scholar 

  18. 18.

    S. Kari, H. Berger, U. Gabbert, R. Guinovart-Dıaz, J. Bravo-Castillero, and R. Rodrıguez-Ramos, Evaluation of Influence of Interphase Material Parameters on Effective Material Properties of Three Phase Composites, Compos. Sci. Technol., 2008, 68, p 684–691

    CAS  Article  Google Scholar 

  19. 19.

    L. Pérez, S. Lascano, C. Aguilar, D. Estay, U. Messner, I.A. Figueroa, and I. Alfonso, DEM-FEA Estimation of Pores Arrangement Effect on the Compressive Young’s Modulus for Mg Foams, Comput. Mater. Sci., 2015, 110, p 281–286

    Article  Google Scholar 

  20. 20.

    R. Dobry and T.T. Ng, Discrete Modeling of Stress-Strain Behavior of Media at Small and Large Strain, Eng. Comput., 1992, 9, p 129–143

    Article  Google Scholar 

  21. 21.

    A. Bálint and A. Szlancsik, Mechanical Properties of Iron Hollow Sphere Reinforced Metal Matrix Syntactic Foams, Mater. Sci. Forum, 2015, 812, p 3–8

    Article  Google Scholar 

  22. 22.

    H. Fredriksson, K. Hansson, and A. Olsson, On the Mechanism of Liquid Copper Penetration into Iron Grain Boundaries, Scand. J. Metall., 2001, 30, p 41–50

    CAS  Article  Google Scholar 

  23. 23.

    C. Kloss, C. Goniva, A. Hager, S. Amberger, and S. Pirker, Models, Algorithms and Validation for Opensource DEM and CFD-DEM, Prog. Comput. Fluid Dyn., 2012, 12, p 140–152

    Article  Google Scholar 

  24. 24.

    S.K. Sebsadji and K. Chouicha, Determining Periodic Representative Volumes of Concrete Mixtures Based on the Fractal Analysis, Int. J. Solids Struct., 2012, 49, p 2941–2950

    Article  Google Scholar 

  25. 25.

    L. Pérez, S. Lascano, C. Aguilar, D. Domancic, and I. Alfonso, Simplified Fractal FEA Model for the Estimation of the Young’s Modulus of Ti Foams Obtained by Powder Metallurgy, Mater. Des., 2015, 83, p 276–283

    Article  Google Scholar 

  26. 26.

    R.K. Everett and R.J. Arsenault, Ed., Metal Matrix Composites: Processing and Interface, Academic Press, New York, 1991

    Google Scholar 

Download references


L. Pérez acknowledges the financial support from the Advanced Center for Electrical and Electronic Engineering, AC3E, Basal Project FB0008, CONICYT. I. Alfonso would like to acknowledge the financial support from UNAM PAPIIT IN117316. R. Drew acknowledges the financial support from PREI DGAPA UNAM.

Author information



Corresponding author

Correspondence to I. Alfonso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, L., Villalobos, M., Órdenes, C. et al. Elastic Modulus Estimation for Copper Syntactic Foams Reinforced with Iron Hollow Spheres of Different Wall Thicknesses. J. of Materi Eng and Perform 28, 100–106 (2019). https://doi.org/10.1007/s11665-018-3827-3

Download citation


  • copper
  • DEM
  • FEA
  • foam
  • iron
  • syntactic