EBSD Study on Processing Domain Parameters of Oxide Dispersion Strengthened 18Cr Ferritic Steel

Abstract

This paper presents the results of an experimental study aimed to identify hot working domains in oxide dispersion strengthened (ODS) 18Cr ferritic steel over a wide range of temperatures (1323-1473 K) and strain rates (0.01-10 s−1). The experimental data were obtained by uniaxial compression test using the Gleeble-1500D simulator in this range of temperature and strain rate. An inverse relationship with temperature and positive strain rate sensitivity associated with dynamic recovery and recrystallization, which is influenced by temperature and strain rate, was derived from the flow stress. Based on the processing map generated at 0.5 true strain, using rate dynamic material model (DMM) approach and the calculated instability parameter \(\left( {\xi \left( \acute{\epsilon} \right)} \right) > 0\), the optimum processing domain has been determined for this steel. The most favorable processing parameters are found in the temperature ranges of 1350-1450 K with a strain rate of 0.01 s−1 and 1473 K with a strain rate 0.1 s−1 with peak efficiency of 30 and 35%, respectively. The material flow behavior was studied using scanning electron microscopy (SEM)-based EBSD microstructural characterization. The steel subjected to 1323 K at high strain rate 10 s−1 in the low-efficiency workability region showed low aspect ratio as compared to the elongated bamboo-like initial microstructure; however, minimum strain rate (0.01 s−1) showing that localized slip/shearing is the key mechanism and fiber texture studied from the intensity distribution of inverse pole figure showed the presence of significant amount of θ-fibers. In contrast, dynamic recrystallization dominated at higher efficiency region in the safe domain of processing map and γ-fiber texture was evident in the specimen deformed at 1373 and 1473 K with strain rate of 0.01 and 0.1 s−1, respectively, which is responsible for the change in the initial 〈1 1 0〉//ED α-fiber texture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195

    CAS  Article  Google Scholar 

  2. 2.

    A. Aitkaliyeva, L. He, H. Wen, B. Miller, X.M. Bai, and T. Allen, Irradiation Effects in Generation IV Nuclear Reactor Materials, Structural Materials for Generation IV Nuclear Reactors, chap. 7, Elsevier, Amsterdam, 2017, p 253–283

  3. 3.

    V. de Castro, E.A. Marquis, S.L. Perez, R. Pareja, and M.L. Jenkins, Stability of Nanoscale Secondary Phases in an Oxide Dispersion Strengthened Fe-12Cr Alloy, Acta Mater., 2001, 59, p 3927–3936

    Article  CAS  Google Scholar 

  4. 4.

    P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428, p 6–12

    CAS  Article  Google Scholar 

  5. 5.

    R.L. Klueh, Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Int. Mater. Rev., 2005, 50, p 287–312

    CAS  Article  Google Scholar 

  6. 6.

    S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara, Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials, J. Nucl. Mater., 1993, 204, p 65–73

    CAS  Article  Google Scholar 

  7. 7.

    S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307–311, p 749–757

    Article  Google Scholar 

  8. 8.

    C. Cayron, E. Rath, I. Chu, and S. Launois, Microstructural Evolution of Y2O3 and MgAl2O4 ODS EUROFER steels During Their Elaboration by Mechanical Milling and Hot Isostatic Pressing, J. Nucl. Mater., 2004, 335, p 83–102

    CAS  Article  Google Scholar 

  9. 9.

    A. Alamo, J.L. Bertin, V.K. Shamardin, and P. Wident, Mechanical Properties of 9Cr Martensitic Steels and ODS-FeCr Alloys After Neutron Irradiation at 325 °C up to 42 dpa, J. Nucl. Mater., 2007, 367–370, p 54–59

    Article  CAS  Google Scholar 

  10. 10.

    H. Hadraba, B. Fournier, L. Stratil, J. Malaplate, A.L. Rouffié, P. Wident, L. Ziolek, and J.L. Béchade, Influence of Microstructure on Impact Properties of 9–18%Cr ODS Steels for Fusion/Fission Applications, J. Nucl. Mater., 2011, 411, p 112–118

    CAS  Article  Google Scholar 

  11. 11.

    T. Tanno, M. Takeuchi, S. Ohtsuka, and T. Kaito, Corrosion Behavior of ODS Steels with Several Chromium Contents in Hot Nitric Acid Solutions, J. Nucl. Mater., 2017, 494, p 219–226

    CAS  Article  Google Scholar 

  12. 12.

    Z. Oksiuta, High-Temperature Oxidation Resistance of Ultrafine-Grained 14%Cr ODS Ferritic Steel, J. Mater. Sci., 2013, 48, p 4801–4805

    CAS  Article  Google Scholar 

  13. 13.

    R. Novotny, P. Janik, S. Penttila, P. Hahner, J. Macak, J. Siegl, and P. Hauˇsild, High Cr ODS Steels Performance Under Supercritical Water Environment, J. Supercrit. Fluids, 2013, 81, p 147–156

    CAS  Article  Google Scholar 

  14. 14.

    A. García-Junceda, M. Hernández-Mayoral, and M. Serrano, Influence of the Microstructure on the Tensile and Impact Properties of a 14Cr ODS Steel Bar, Mater. Sci. Eng. A, 2012, 556, p 696–703

    Article  CAS  Google Scholar 

  15. 15.

    S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi, Tube Manufacturing and Characterization of Oxide Dispersion Strengthened Ferritic Steels, J. Nucl. Mater., 2000, 283–287, p 702–706

    Article  Google Scholar 

  16. 16.

    M.J. Alinger, G.R. Odette, and G.E. Lucas, Tensile and Fracture Toughness Properties of MA957: Implications to the Development of Nanocomposited Ferritic Alloys, J. Nucl. Mater., 2002, 307, p 484–489

    Article  Google Scholar 

  17. 17.

    M. Wang, Z. Zhou, H. Sun, H. Hu, and S. Li, Microstructural Observation and Tensile Properties of ODS-304 Austenitic Steel, Mater. Sci. Eng. A, 2013, 559, p 287–292

    CAS  Article  Google Scholar 

  18. 18.

    Z. Oksiuta, P. Mueller, and P. Spatig, Effect of Thermo-mechanical Treatments on the Microstructure and Mechanical Properties of an ODS Ferritic Steel, J. Nucl. Mater., 2011, 412, p 221–226

    CAS  Article  Google Scholar 

  19. 19.

    D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng. A, 2011, 528, p 8565–8572

    CAS  Article  Google Scholar 

  20. 20.

    T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng. A, 2002, 325, p 112–125

    Article  Google Scholar 

  21. 21.

    L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, and G.S. Wang, Characteristics of Hot Compression Behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy with an Equiaxed Microstructure, Mater. Sci. Eng. A, 2009, 505, p 136–143

    Article  CAS  Google Scholar 

  22. 22.

    S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Map for Cold and Hot Working of Stainless Steel Type AISI, 304 L, Mater. Lett., 1992, 15, p 79–83

    CAS  Article  Google Scholar 

  23. 23.

    S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing Maps for Hot Working of Commercial Grade Wrought Stainless Steel type AISI, 304, Mater. Sci. Eng. A, 1994, 177, p 143–149

    CAS  Article  Google Scholar 

  24. 24.

    P.V. Sivaprasad, S. Venugopal, V. Maduraimuthu, M. Vasudevan, S.L. Mannan, Y.V.R.K. Prasad, and R.C. Chaturvedi, Validation of Processing Maps for a 15Cr-15Ni-2.2Mo-0.3Ti Austenitic Stainless Steel Using Hot Forging and Rolling Tests, J. Mater. Process. Technol., 2003, 132, p 262–268

    CAS  Article  Google Scholar 

  25. 25.

    P.V. Sivaprasad, S.L. Mannan, and Y.V.R.K. Prasad, Identification of Optimum Process Parameters for Hot Extrusion Using Finite Element Simulation and Processing Maps, Mater. Sci. Technol., 2004, 20, p 1545–1550

    CAS  Article  Google Scholar 

  26. 26.

    G. Zhang, Z. Zhou, H. Sun, L. Zou, M. Wang, and S. Li, Hot Deformation Behavior and Processing Map of a 9Cr Ferritic/Martensitic ODS Steel, J. Nucl. Mater., 2014, 455, p 139–144

    CAS  Article  Google Scholar 

  27. 27.

    T. Narita, S. Ukai, T. Kaito, S. Ohtsuka, and T. Kobayashi, Development of Two-Step Softening Heat Treatment for Manufacturing 12Cr-ODS Ferritic Steel Tubes, J. Nucl. Sci. Technol., 2012, 41, p 1008–1012

    Article  Google Scholar 

  28. 28.

    M. Nagini, R. Vijay, K.V. Rajulapati, K.B. Rao, M. Ramakrishna, A.V. Reddy, and G. Sundararajan, Effect of Process Parameters on Microstructure and Hardness of Oxide Dispersion Strengthened 18Cr Ferritic Steel, Met. Trans. A, 2016, 47, p 4197–4209

    CAS  Article  Google Scholar 

  29. 29.

    Y. Li, E. Onodera, and A. Chiba, Evaluation of Friction Coefficient by Simulation in Bulk Metal Forming Process, Met. Trans. A, 2010, 51, p 1210–1215

    CAS  Google Scholar 

  30. 30.

    D. Samantaray, S. Mandal, and A.K. Bhaduri, Optimization of Hot Working Parameters for Thermo-mechanical Processing of Modified 9Cr-1Mo (P91) Steel Employing Dynamic Materials Model, Mater. Sci. Eng. A, 2011, 528, p 5204–5211

    CAS  Article  Google Scholar 

  31. 31.

    B. Verlinden, J. Driver, I. Samajhdar, and R.D. Doherty, Thermo-mechanical Processing of Metallic Material, Elsevier, London, 2007

    Google Scholar 

  32. 32.

    J.J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P.R. Calvillo, and L.A.I. Kestens, Through Process Texture Evolution and Magnetic Properties of High Si Non-oriented Electrical Steels, Mater. Character., 2012, 71, p 49–57

    CAS  Article  Google Scholar 

  33. 33.

    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 1995

    Google Scholar 

  34. 34.

    C.L. Chen, G.J. Tatlock, and A.R. Jones, Effect of Annealing Temperatures on the Secondary Re-crystallization of Extruded PM2000 Steel Bar, J. Microsc., 2009, 233, p 474–481

    CAS  Article  Google Scholar 

  35. 35.

    M. Serrano, M. Hernández-Mayoral, and A. García-Junceda, Microstructural Anisotropy Effect on the Mechanical Properties of a 14Cr ODS Steel, J. Nucl. Mater., 2012, 428, p 103–109

    CAS  Article  Google Scholar 

  36. 36.

    E.I. Poliakt and J.J. Jonass, One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136

    Article  Google Scholar 

  37. 37.

    A. Sarkar, A. Marchattiwar, J.K. Chakravartty, and B.P. Kashyap, Kinetics of Dynamic Recrystallization in Ti-Modified 15Cr-15Ni-2Mo Austenitic Stainless Steel, J. Nucl. Mater., 2013, 432, p 9–15

    CAS  Article  Google Scholar 

  38. 38.

    G.V. Prasad, M. Goerdeler, and G. Gottstein, Work Hardening Model Based on Multiple Dislocation Densities, Mater. Sci. Eng. A, 2005, 400, p 231–233

    Article  CAS  Google Scholar 

  39. 39.

    A.D. Rollett and U.F. Kocks, A Review of the Stages of Work Hardening, Solid State Phenom., 1993, 35(36), p 1–9

    Article  Google Scholar 

  40. 40.

    E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43, p 684–691

    CAS  Article  Google Scholar 

  41. 41.

    C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metal., 1966, 14, p 1136–1138

    CAS  Article  Google Scholar 

  42. 42.

    H. Li, D. Wei, J. Hua, Y. Li, and S. Chen, Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53, p 425–430

    CAS  Article  Google Scholar 

  43. 43.

    H. Takuda, H. Fujimoto, and N. Hatta, Modelling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures, J. Mater. Proc. Technol., 1998, 80–81, p 513–516

    Article  Google Scholar 

  44. 44.

    A. Galiyev, R. Kaibyshev, and T. Saikai, Continuous Dynamic Recrystallization in Magnesium Alloy, Mater. Sci. Forum, 2003, 419–422, p 509–514

    Article  Google Scholar 

  45. 45.

    T. Sakai and J.J. Jonas, Strength and Structure Under Hot-Working Conditions, Acta Mater., 1984, 32, p 189–209

    CAS  Article  Google Scholar 

  46. 46.

    D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Design, 2010, 31, p 981–984

    CAS  Article  Google Scholar 

  47. 47.

    H. Ziegler, I.N. Sneddon, and R. Hill, Ed., Progress in Solid Mechanics, Wiley, New York, 1965, p 91–193

    Google Scholar 

  48. 48.

    I. Prigogine, Time, Structure and Fluctuations, Science, 1978, 201, p 777–785

    CAS  Article  Google Scholar 

  49. 49.

    Y. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12(6), p 638–645

    CAS  Article  Google Scholar 

  50. 50.

    Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    CAS  Article  Google Scholar 

  51. 51.

    L. Wang, Y. Fan, and G. Huang, Plastic Deformation at Elevated Temperature and Processing Maps of Magnesium Alloy, Chin. J. Nonferrous Met., 2004, 14(7), p 1068–1072

    CAS  Google Scholar 

  52. 52.

    T.S. Chou and H.K.D.H. Bhadeshia, Grain Control in Mechanically Alloyed Oxide Dispersion Strengthened MA957 Steel, Mater. Sci. Technol., 1993, 9, p 890–897

    CAS  Article  Google Scholar 

  53. 53.

    M. G. Stout, J. S. Kallend, U.F. Kocks, M. A. Przystupa and A. D. Rollet, in Proceedings on 8 International Conference on Textures of Materials, J.S. Kallend and G. Gottstein, Eds., TMS, Warrendale, 1988, p 479–484

  54. 54.

    B. Sander and D. Raabe, Texture Inhomogeneity in a Ti-Nb-Based β-Titanium Alloy After Warm Rolling and Recrystallization, Mater. Sci. Eng. A, 2008, 479, p 236–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement during this work. The authors thank Nuclear Fuel Complex (NFC), Hyderabad, for the hot extruded samples. They also thank Dept. of MME, IIT-Madras, Chennai, for providing the Gleeble simulator facility for uniaxial compression testing and UGC-DAE-CSR at Kalpakkam for extending the FEG-SEM facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manmath Kumar Dash.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dash, M.K., Saroja, S., John, R. et al. EBSD Study on Processing Domain Parameters of Oxide Dispersion Strengthened 18Cr Ferritic Steel. J. of Materi Eng and Perform 28, 263–272 (2019). https://doi.org/10.1007/s11665-018-3806-8

Download citation

Keywords

  • EBSD
  • fiber texture
  • processing
  • stainless steel