Skip to main content

Advertisement

Log in

Fabrication and Characterization of Core–Shell Density-Graded 316L Stainless Steel Porous Structure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, cylindrical shape 316 L cellular structure with different densities in its core and outer layer (shell) is fabricated by using carbamide as a space holder, via powder metallurgy route and layer-by-layer technique. The arrangement of the created pore is the same as face-centered cubic atomic structure, and different densities are created in two regions by using carbamide particles having two different sizes in the range of 1.7-2 and 2-2.4 mm. The effect of creating a structure with higher porosity (64.5%) in the core and lower porosity (53.8%) in the shell and vice versa and also change in the ratio of the core to the cylinder cross-sectional areas, on the mechanical properties and compaction load bearing of the fabricated foam samples were investigated. In leaching process of the carbamide particles, as an important step of porous structure’s fabrication, it is shown that discontinuous leaching process is more favorable than continuous, by which it would be possible to remove more carbamide particles (around 20%) at the same time. Furthermore, the deformation of the density-graded foam shows the parallel mechanism in the core and shell sections, and the contribution of each part depends on its density and thickness. The energy absorption behavior of the fabricated specimens is evaluated optimally in terms of the energy absorption value associated with the ideal adsorption behavior. The maximum ideal energy absorption efficiency for the samples with more porosity in the shell was approximately equal to 0.91, while for the sample includes the lower amount of porosity in the shell, this value was in the range of 0.85 and 0.89.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Weise, D. Lehmhus, J. Baumeister, R. Kun, M. Bayoumi, and M. Busse, Production and Properties of 316l Stainless Steel Cellular Materials and Syntactic Foams, Steel Res. Int., 2014, 85(3), p 486–497

    Article  CAS  Google Scholar 

  2. I. Mutlu and E. Oktay, Production and Aging of Highly Porous 17-4 PH Stainless Steel, J. Porous Mater., 2012, 19(4), p 433–440

    Article  CAS  Google Scholar 

  3. H.Ö. Gülsoy and R.M. German, Sintered Foams from Precipitation Hardened Stainless Steel Powder, Powder Metall., 2008, 51(4), p 350–353. https://doi.org/10.1179/174329008X286703

    Article  CAS  Google Scholar 

  4. D.P. Mondal, H. Jain, S. Das, and A.K. Jha, Stainless Steel Foams Made through Powder Metallurgy Route Using NH4HCO3 as Space Holder, Mater. Des., 2015, 88, p 430–437. https://doi.org/10.1016/j.matdes.2015.09.020

    Article  CAS  Google Scholar 

  5. S.V. Raj and L.J. Ghosn, Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels, Mater. Sci. Eng. A, 2008, 474(1-2), p 88–95

    Article  Google Scholar 

  6. I. Mutlu and E. Oktay, Characterization of 17-4 PH Stainless Steel Foam for Biomedical Applications in Simulated Body Fluid and Artificial Saliva Environments, Mater. Sci. Eng. C. Mater. Biol. Appl., 2013, 33(3), p 1125–1131. https://doi.org/10.1016/j.msec.2012.12.004

    Article  CAS  Google Scholar 

  7. D.R. Tian, Y.H. Pang, L. Yu, and L. Sun, Production and Characterization of High Porosity Porous Fe-Cr-C Alloys by the Space Holder Leaching Technique, Int. J. Miner. Metall. Mater., 2016, 23(7), p 793–798. https://doi.org/10.1007/s12613-016-1293-1

    Article  CAS  Google Scholar 

  8. I. Mutlu and E. Oktay, Mechanical Properties of Sinter-Hardened Cr-Si-Ni-Mo Based Steel Foam, Mater. Des., 2013, 44, p 274–282. https://doi.org/10.1016/j.matdes.2012.08.032

    Article  CAS  Google Scholar 

  9. A.K. Barnwal, D.P. Mondal, R. Kumar, N. Prasanth, and R. Dasgupta, Compressive Deformation Behavior of Open-Cell Cu-Zn-Al Alloy Foam Made Through P/M Route Using Mechanically Alloyed Powder, J. Mater. Eng. Perform., 2018, https://doi.org/10.1007/s11665-018-3165-5

    Article  Google Scholar 

  10. A. Mansourighasri, N. Muhamad, and A.B. Sulong, Processing Titanium Foams Using Tapioca Starch as a Space Holder, J. Mater. Process. Technol., 2012, 212(1), p 83–89. https://doi.org/10.1016/j.jmatprotec.2011.08.008

    Article  CAS  Google Scholar 

  11. B. Xie, Y.Z. Fan, T.Z. Mu, and B. Deng, Fabrication and Energy Absorption Properties of Titanium Foam with CaCl 2 as a Space Holder, Mater. Sci. Eng. A, 2017, 708(13-16), p 419–423. https://doi.org/10.1016/j.msea.2017.09.123

    Article  CAS  Google Scholar 

  12. A. Hassani, A. Habibolahzadeh, and H. Bafti, Production of Graded Aluminum Foams via Powder Space Holder Technique, Mater. Des., 2012, 40, p 510–515. https://doi.org/10.1016/j.matdes.2012.04.024

    Article  CAS  Google Scholar 

  13. H. Bafti and A. Habibolahzadeh, Production of Aluminum Foam by Spherical Carbamide Space Holder Technique-Processing Parameters, Mater. Des., 2010, 31(9), p 4122–4129

    Article  CAS  Google Scholar 

  14. N. Bekoz and E. Oktay, Effects of Carbamide Shape and Content on Processing and Properties of Steel Foams, J. Mater. Process. Technol., 2012, 212(10), p 2109–2116. https://doi.org/10.1016/j.jmatprotec.2012.05.015

    Article  CAS  Google Scholar 

  15. A.H. Brothers and D.C. Dunand, Density-Graded Cellular Aluminum, Adv. Eng. Mater., 2006, 8(9), p 805–809

    Article  CAS  Google Scholar 

  16. Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, and N. Yoshikawa, Fabrication of Functionally Graded Aluminum Foam Using Aluminum Alloy Die Castings by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 534, p 716–719. https://doi.org/10.1016/j.msea.2011.11.100

    Article  CAS  Google Scholar 

  17. Y. Hangai, T. Morita, S. Koyama, O. Kuwazuru, and N. Yoshikawa, Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool, J. Mater. Eng. Perform., 2016, 25(9), p 3691–3696

    Article  CAS  Google Scholar 

  18. Y. Hangai, K. Saito, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa, Fabrication and Compression Properties of Functionally Graded Foam with Uniform Pore Structures Consisting of Dissimilar A1050 and A6061 Aluminum Alloys, Mater. Sci. Eng. A, 2014, 613, p 163–170. https://doi.org/10.1016/j.msea.2014.06.039

    Article  CAS  Google Scholar 

  19. G. Sun, G. Li, S. Hou, S. Zhou, W. Li, and Q. Li, Crashworthiness Design for Functionally Graded Foam-Filled Thin-Walled Structures, Mater. Sci. Eng. A, 2010, 527(7-8), p 1911–1919. https://doi.org/10.1016/j.msea.2009.11.022

    Article  CAS  Google Scholar 

  20. J. Fang, Y. Gao, X. An, G. Sun, J. Chen, and Q. Li, Design of Transversely-Graded Foam and Wall Thickness Structures for Crashworthiness Criteria, Compos. Part B Eng., 2016, 92, p 338–349

    Article  Google Scholar 

  21. Y. Torres, P. Trueba, J.J. Pavón, E. Chicardi, P. Kamm, F. García-Moreno, and J.A. Rodríguez-Ortiz, Design, Processing and Characterization of Titanium with Radial Graded Porosity for Bone Implants, Mater. Des., 2016, 110, p 179–187. https://doi.org/10.1016/j.matdes.2016.07.135

    Article  CAS  Google Scholar 

  22. M. Mirzaei and M.H. Paydar, A Novel Process for Manufacturing Porous 316 L Stainless Steel with Uniform Pore Distribution, Mater. Des., 2017, 121, p 442–449. https://doi.org/10.1016/j.matdes.2017.02.069

    Article  CAS  Google Scholar 

  23. S.H. Yalkowsky, Y. He, and P. Jain, Handbook of Aqueous Solubility Data, 2nd ed., CRC Press, Boca Raton, 2010

    Book  Google Scholar 

  24. M. Koebel and E.O. Strutz, Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects, Ind. Eng. Chem. Res., 2003, 42(10), p 2093–2100. https://doi.org/10.1021/ie020950o

    Article  Google Scholar 

  25. Y. Mu and G. Yao, Anisotropic Compressive Behavior of Closed-Cell Al-Si Alloy Foams, Mater. Sci. Eng. A, 2010, 527(4-5), p 1117–1119. https://doi.org/10.1016/j.msea.2009.09.045

    Article  CAS  Google Scholar 

  26. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design, ASM international, Materials Park, 2003

    Google Scholar 

  27. Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa, Deformation Behavior Estimation of Aluminum Foam by X-Ray CT Image-Based Finite Element Analysis, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(4), p 1880–1886

    Article  CAS  Google Scholar 

  28. M.S.S. Attia, S.A.A. Meguid, and H. Nouraei, Nonlinear Finite Element Analysis of the Crush Behaviour of Functionally Graded Foam-Filled Columns, Finite Elem. Anal. Des., 2012, 61, p 50–59. https://doi.org/10.1016/j.finel.2012.06.004

    Article  Google Scholar 

  29. J. Miltz and O. Ramon, Energy Absorption Characteristics of Polymeric Foams Used as Cushioning Materials, Polym. Eng. Sci., 1990, 30(2), p 129–133. https://doi.org/10.1002/pen.760300210

    Article  CAS  Google Scholar 

  30. M. Avalle, G. Belingardi, and A. Ibba, Mechanical Models of Cellular Solids: Parameters Identification from Experimental Tests, Int. J. Impact Eng., 2007, 34(1), p 3–27

    Article  Google Scholar 

  31. M. Avalle, G. Belingardi, and R. Montanini, Characterization of Polymeric Structural Foams under Compressive Impact Loading by Means of Energy-Absorption Diagram, Int. J. Impact Eng., 2001, 25(5), p 455–472

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported partly by Shiraz University under the Grant No. of Eng. 95GRD1M1818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Paydar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Paydar, M.H. Fabrication and Characterization of Core–Shell Density-Graded 316L Stainless Steel Porous Structure. J. of Materi Eng and Perform 28, 221–230 (2019). https://doi.org/10.1007/s11665-018-3797-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3797-5

Keywords

Navigation