Optimization of Tensile and Corrosion Properties of Dissimilar Friction Stir Welded AA2024-7075 Joints

Abstract

In this work, we performed some joining experiments of dissimilar aluminum alloys AA2024-T351 and AA7075-T651 using friction stir welding (FSW) technique with different process parameters (rotational speed, welding speed and plunge depth). Response surface methodology based on a central composite rotatable design was used to establish the mathematical models predicting the tensile properties and corrosion rate of dissimilar FSW joints with some high confidence level. Analysis of variance method was employed to verify the developed models. Besides, the influences of FSW process parameters on tensile and corrosion properties of joints were analyzed. In order to obtain a desirable combination property of the dissimilar FSW joints, the optimum process parameters after experimental verification were proposed as: rotational speed 1495 rev/min, welding speed 187 mm/min and plunge depth 0.03 mm. This verification illustrated that the developed models are appropriate for the modeling and optimization of process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    E. Starke and J. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32(2–3), p 131–172

    Article  Google Scholar 

  2. 2.

    K. Taylor and A. Sherry, The Characterization and Interpretation of Ductile Fracture Mechanisms in AL2024-T351 Using X-Ray and Focused Ion Beam Tomography, Acta Mater., 2012, 60(3), p 1300–1310

    CAS  Article  Google Scholar 

  3. 3.

    T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871

    CAS  Article  Google Scholar 

  4. 4.

    Ş. Kasman, Multi-Response Optimization Using the Taguchi-Based Grey Relational Analysis: A Case Study for Dissimilar Friction Stir Butt Welding of AA6082-T6/AA5754-H111, Int. J. Adv. Manuf. Tech., 2013, 68(1–4), p 795–804

    Article  Google Scholar 

  5. 5.

    G. Çam and G. İpekoğlu, Recent Developments in Joining of Aluminum Alloys, Int. J. Adv. Manuf. Tech., 2017, 91(5–8), p 1851–1866

    Article  Google Scholar 

  6. 6.

    J.-Q. Su et al., Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729

    CAS  Article  Google Scholar 

  7. 7.

    C. Rhodes et al., Effects of Friction Stir Welding on Microstructure of 7075 Aluminum, Scr. Mater., 1997, 36(1), p 69–75

    CAS  Article  Google Scholar 

  8. 8.

    Thomas, W., Friction stir butt welding. International Patent Application No. PCT/GB92/0220, 1991

  9. 9.

    D.M. Neto and P. Neto, Numerical Modeling of Friction Stir Welding Process: A Literature Review, Int. J. Adv. Manuf. Tech., 2013, 65(1–4), p 115–126

    Article  Google Scholar 

  10. 10.

    R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mat. Sci. Eng. R: Rep., 2005, 50(1), p 1–78

    Article  CAS  Google Scholar 

  11. 11.

    R. Nandan, T. DebRoy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023

    CAS  Article  Google Scholar 

  12. 12.

    P. Threadgill et al., Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93

    CAS  Article  Google Scholar 

  13. 13.

    O. Valerio Flores et al., Microstructural Issues in a Friction-Stir-Welded Aluminum Alloy, Scr. Mater., 1998, 38(5), p 703–708

    Article  Google Scholar 

  14. 14.

    Y.J. Chao and X. Qi, Thermal and Thermo-Mechanical Modeling of Friction Stir Welding of Aluminum Alloy 6061-T6, J. Mater. Process. Manu., 1998, 7, p 215–233

    CAS  Article  Google Scholar 

  15. 15.

    H.S. Park et al., Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy, Mater. Sci. Eng., A, 2004, 371(1), p 160–169

    Article  CAS  Google Scholar 

  16. 16.

    W.B. Lee, Y. Yeon, and S. Jung, The Improvement of Mechanical Properties of Friction-Stir-Welded A356 Al Alloy, Mater. Sci. Eng., A, 2003, 355(1), p 154–159

    Article  CAS  Google Scholar 

  17. 17.

    Y.S. Sato et al., Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys, Mater. Sci. Eng., A, 2003, 354(1), p 298–305

    Article  CAS  Google Scholar 

  18. 18.

    H. Fujii et al., Effect of Tool Shape on Mechanical Properties and Microstructure of Friction Stir Welded Aluminum Alloys, Mater. Sci. Eng., A, 2006, 419(1), p 25–31

    Article  CAS  Google Scholar 

  19. 19.

    W. Xu et al., Influence of Welding Parameters and Tool Pin Profile on Microstructure and Mechanical Properties Along the Thickness in a Friction Stir Welded Aluminum Alloy, Mater. Des., 2013, 47, p 599–606

    CAS  Article  Google Scholar 

  20. 20.

    S. Amini, M. Amiri, and A. Barani, Investigation of the Effect of Tool Geometry on Friction Stir Welding of 5083-O Aluminum Alloy, Int. J. Adv. Manuf. Tech., 2015, 76(1–4), p 255–261

    Article  Google Scholar 

  21. 21.

    K.P. Mehta and V.J. Badheka, Effects of Tilt Angle on the Properties of Dissimilar Friction Stir Welding Copper to Aluminum, Mater. Manuf. Process., 2016, 31(3), p 255–263

    CAS  Article  Google Scholar 

  22. 22.

    N.Z. Khan et al., Investigations on Tunneling and Kissing Bond Defects in FSW Joints for Dissimilar Aluminum Alloys, J. Alloys Compd., 2015, 648, p 360–367

    CAS  Article  Google Scholar 

  23. 23.

    Z. Zhang et al., Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy, Metall. Mater. Trans. A, 2011, 42(6), p 1717–1726

    CAS  Article  Google Scholar 

  24. 24.

    Tarasov, S.Y., et al. Effect of friction stir welding parameters on defect formation. in AIP Conference Proceedings. 2015. AIP Publishing

  25. 25.

    G.E. Box and K.B. Wilson, On the Experimental Attainment of Optimum Conditions, in Breakthroughs in Statistics, Springer, Berlin, 1992, p 270–310

    Google Scholar 

  26. 26.

    J.-S. Kwak, Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process, Int. J. Mach. Tools Manuf, 2005, 45(3), p 327–334

    Article  Google Scholar 

  27. 27.

    G. Elatharasan and V.S. Kumar, An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy Using RSM, Proc. Eng., 2013, 64, p 1227–1234

    CAS  Article  Google Scholar 

  28. 28.

    N.S. Sundaram and N. Murugan, Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminium Alloys, Mater. Des., 2010, 31(9), p 4184–4193

    Article  CAS  Google Scholar 

  29. 29.

    D. Venkateswarlu et al., Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys, J. Mater. Eng. Perform., 2015, 24(12), p 4809–4824

    CAS  Article  Google Scholar 

  30. 30.

    S. Rajakumar and V. Balasubramanian, Establishing Relationships Between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters, Mater. Des., 2012, 40, p 17–35

    CAS  Article  Google Scholar 

  31. 31.

    A. Heidarzadeh et al., Tensile Behavior of Friction Stir Welded AA 6061-T4 Aluminum Alloy Joints, Mater. Des., 2012, 37, p 166–173

    CAS  Article  Google Scholar 

  32. 32.

    A.R. Ilkhichi et al., Establishing Mathematical Models to Predict Grain Size and Hardness of the Friction Stir-Welded AA 7020 Aluminum Alloy Joints, Metall. Mater. Trans. B, 2015, 46(1), p 357–365

    Article  CAS  Google Scholar 

  33. 33.

    W. Safeen et al., Predicting the Tensile Strength, Impact Toughness, Hardness of Friction Stir-Welded AA6061-T6 Using Response Surface Methodology, Int. J. Adv. Manuf. Tech., 2016, 87(5–8), p 1765–1781

    Article  Google Scholar 

  34. 34.

    G. Rambabu et al., Optimization of Friction Stir Welding Parameters for Improved Corrosion Resistance of AA2219 Aluminum Alloy Joints, Def. Technol., 2015, 11(4), p 330–337

    Article  Google Scholar 

  35. 35.

    Testing A.S.F. and Materials. ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. 2004. ASTM

  36. 36.

    A. Heidarzadeh et al., Establishing a Mathematical Model to Predict the Tensile Strength of Friction Stir Welded Pure Copper Joints, Metall. Mater. Trans. B, 2013, 44(1), p 175–183

    CAS  Article  Google Scholar 

  37. 37.

    M. Farhanchi et al., Mechanical Activation Process for Self-Propagation High-Temperature Synthesis of Ceramic-Based Composites, J. Therm. Anal. Calorim., 2015, 122(1), p 123–133

    CAS  Article  Google Scholar 

  38. 38.

    A. Heidarzadeh et al., Tensile Properties of Friction Stir Welds of AA 7020 Aluminum Alloy, T. Indian I. Metals, 2015, 68(5), p 757–767

    CAS  Article  Google Scholar 

  39. 39.

    A. Heidarzadeh and T. Saeid, Prediction of Mechanical Properties in Friction Stir Welds of Pure Copper, Mater. Des., 2013, 52, p 1077–1087

    CAS  Article  Google Scholar 

  40. 40.

    A. Heidarzadeh and T. Saeid, Correlation Between Process Parameters, Grain Size and Hardness of Friction-Stir-Welded Cu-Zn Alloys, Rare Metals, 2016, 27, p 1–11

    Google Scholar 

  41. 41.

    Z. Zhang, B. Xiao, and Z. Ma, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded 2219Al-T6 Joints, J. Mater. Sci., 2012, 47(9), p 4075–4086

    CAS  Article  Google Scholar 

  42. 42.

    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Optimization of the Friction-Stir-Welding Process and Tool Parameters to Attain a Maximum Tensile Strength of AA7075-T6 Aluminium Alloy, P. I. Mech. Eng. B: J. Eng., 2010, 224(8), p 1175–1191

    Article  Google Scholar 

  43. 43.

    R. Kadaganchi, M.R. Gankidi, and H. Gokhale, Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology, Def. Technol., 2015, 11(3), p 209–219

    Article  Google Scholar 

  44. 44.

    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Predicting Tensile Strength, Hardness and Corrosion Rate of Friction Stir Welded AA6061-T 6 Aluminium Alloy Joints, Mater. Des., 2011, 32(5), p 2878–2890

    CAS  Article  Google Scholar 

  45. 45.

    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Establishing Empirical Relationships to Predict Grain Size and Tensile Strength of Friction Stir Welded AA 6061-T6 Aluminium Alloy Joints, T. Nonferr. Metal. Soc., 2010, 20(10), p 1863–1872

    CAS  Article  Google Scholar 

  46. 46.

    M. Dehghani, A. Amadeh, and S.A. Mousavi, Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel, Mater. Des., 2013, 49, p 433–441

    CAS  Article  Google Scholar 

  47. 47.

    Z. Zhang and H. Zhang, Numerical Studies on Effect of Axial Pressure in Friction Stir Welding, Sci. Technol. Weld. Join., 2007, 12(3), p 226–248

    Article  Google Scholar 

  48. 48.

    K. Elangovan, V. Balasubramanian, and M. Valliappan, Influences of Tool Pin Profile and Axial Force on the Formation of Friction Stir Processing Zone in AA6061 Aluminium Alloy, Int. J. Adv. Manuf. Tech., 2008, 38(3), p 285–295

    Article  Google Scholar 

  49. 49.

    Y. Tao et al., Influence of Welding Parameter on Mechanical Properties and Fracture Behavior of Friction Stir Welded Al-Mg-Sc Joints, Mater. Sci. Eng., A, 2014, 612, p 236–245

    CAS  Article  Google Scholar 

  50. 50.

    D. Rodrigues et al., Influence of Friction Stir Welding Parameters on the Microstructural and Mechanical Properties of AA 6016-T4 thin Welds, Mater. Des., 2009, 30(6), p 1913–1921

    CAS  Article  Google Scholar 

  51. 51.

    S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Influence of Friction Stir Welding Process and Tool Parameters on Strength Properties of AA7075-T 6 Aluminium Alloy Joints, Mater. Des., 2011, 32(2), p 535–549

    CAS  Article  Google Scholar 

  52. 52.

    F. Zhang et al., Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Joints of a Super High Strength Al-Zn-Mg-Cu Aluminum Alloy, Mater. Des., 2015, 67, p 483–491

    CAS  Article  Google Scholar 

  53. 53.

    S. Benavides et al., Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scr. Mater., 1999, 41(8), p 809–815

    CAS  Article  Google Scholar 

  54. 54.

    S. Lomolino, R. Tovo, and J. Dos Santos, On the Fatigue Behaviour and Design Curves of Friction Stir Butt-Welded Al Alloys, Int. J. Fatigue, 2005, 27(3), p 305–316

    CAS  Article  Google Scholar 

  55. 55.

    K. Elangovan, V. Balasubramanian, and S. Babu, Predicting Tensile Strength of Friction Stir Welded AA6061 Aluminium Alloy Joints by a Mathematical Model, Mater. Des., 2009, 30(1), p 188–193

    CAS  Article  Google Scholar 

  56. 56.

    T.S. Srivatsan, S. Vasudevan, and L. Park, The Tensile Deformation and Fracture Behavior of Friction Stir Welded Aluminum Alloy 2024, Mater. Sci. Eng. A, 2007, 466(1), p 235–245

    Article  CAS  Google Scholar 

  57. 57.

    J.C. Bertoncello, S.M. Manhabosco, and L.F. Dick, Corrosion Study of the Friction Stir Lap Joint of AA7050-T76511 on AA2024-T3 Using the Scanning Vibrating Electrode Technique, Corros. Sci., 2015, 94, p 359–367

    CAS  Article  Google Scholar 

  58. 58.

    D. Wadeson et al., Corrosion Behaviour of Friction Stir Welded AA7108 T79 Aluminium Alloy, Corros. Sci., 2006, 48(4), p 887–897

    CAS  Article  Google Scholar 

  59. 59.

    Besharati-Givi, M.-K. and P. Asadi, Advances in Friction-Stir Welding and Processing. M.K.B. Givi and P. Asadi, Ed., Woodhead Publishing, Cambridge, 2014, p. 65–140

Download references

Acknowledgments

This study is funded by “the Fundamental Research Funds for the Central Universities” (106112015CDJXY130003, 106112018CDXYCL0018, 106112015CDJXZ138803) and “National Natural Science Foundation of China” (51421001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guangjie Huang or Yu Cao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Huang, G., Cao, Y. et al. Optimization of Tensile and Corrosion Properties of Dissimilar Friction Stir Welded AA2024-7075 Joints. J. of Materi Eng and Perform 28, 183–199 (2019). https://doi.org/10.1007/s11665-018-3785-9

Download citation

Keywords

  • corrosion rate
  • dissimilar joint
  • friction stir welding
  • optimization
  • response surface methodology
  • tensile properties