Skip to main content
Log in

Characterization of Static Recrystallization of a Ni-Cr-Mo-Based C276 Superalloy in Two-Stage Isothermal Compression

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to clarify the microstructure evolution characteristics during holding period after slight degree of deformation for a Ni-Cr-Mo-based C276 superalloy, two-stage isothermal compression tests have been performed at the temperature range of 1000-1150 °C and the strain rate range of 0.1-5 s−1. The stress–strain curves and microstructure observation infer that both static recovery (SRV) and static recrystallization (SRX) took place during the holding period when the specimens were deformed at 1100-1150 °C and only SRV occurred in the specimens that deformed at the temperatures lower than 1100 °C. The softening effects increase with the increasing temperature and deformation degree, while the influence of strain rate seems less pronounced because of the limited stored energy resulted from the small deformation. The grain boundary characteristics, analyzed using electron backscatter diffraction technique, indicate that high densities of twins and \(\varSigma 3\) grain boundaries form associated with the nucleation and growth of SRX grains. Finally, the recrystallization during and after deformation, i.e., dynamic recrystallization, SRX and metadynamic recrystallization, was discussed concurrently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.S. Tiley, D.W. Mahaffey, T. Alam, T. Rojhirunsakool, O. Senkov, T. Parthasarthy, and R. Banerjee, Strengthening Mechanisms in an Inertia Friction Welded Nickel-Base Superalloy, Mater. Sci. Eng. A, 2016, 662, p 26–35

    Article  CAS  Google Scholar 

  2. N. Souaï, N. Bozzolo, L. Nazé, Y. Chastel, and R. Logé, About the Possibility of Grain Boundary Engineering Via Hot-Working in a Nickel-Base Superalloy, Scripta Mater., 2010, 62(11), p 851–854

    Article  Google Scholar 

  3. R.J. Lancaster, M.T. Whittaker, S.J. Williams. A Review of Thermo-Mechanical Fatigue Behaviour in Polycrystalline Nickel Superalloys for Turbine Disc Applications, 1st edn (Science Reviews 2000 Ltd; 2013), pp. 2–12.

  4. J. Guo, Review on Wrought Superalloy and Equiaxed Crystal Cast Superalloy Materials and Their Application Basic Theories, Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 46(11), p 1303–1321

    Article  CAS  Google Scholar 

  5. G.-Z. Quan, J. Pan, X. Wang, Z.-H. Zhang, L. Zhang, and T. Wang, Correspondence Between Grain Refinements And Flow Softening Behaviors at Nimonic 80A Superalloy Under Different Strain Rates, Temperatures and Strains, Mater. Sci. Eng. A, 2017, 679, p 358–371

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Yao, Y. Ning, and Y. Nan, Effect of Deformation Temperature and Strain Rate on Dynamic Recrystallized Grain Size of a Powder Metallurgical Nickel-Based Superalloy, J. Alloy. Compd., 2017, 691, p 554–563

    Article  CAS  Google Scholar 

  7. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Strain Rate Dependent Microstructural Evolution During Hot Deformation of a Hot Isostatically Processed Nickel Base Superalloy, J. Alloy. Compd., 2016, 681, p 28–42

    Article  CAS  Google Scholar 

  8. S. Gardner, W. Li, M. Coleman, and R. Johnston, The Effects Of Thermomechanical History on the Microstructure of a Nickel-Base Superalloy During Forging, Mater. Sci. Eng. A, 2016, 668, p 263–270

    Article  CAS  Google Scholar 

  9. Q.Y. Yu, Z.H. Yao, and J.X. Dong, Deformation and Recrystallization Behavior of a Coarse-Grain, Nickel-Base Superalloy Udimet720Li Ingot Material, Mater. Charact., 2015, 107, p 398–410

    Article  CAS  Google Scholar 

  10. X.-M. Chen, Y.C. Lin, M.-S. Chen, H.-B. Li, D.-X. Wen, J.-L. Zhang, and M. He, Microstructural Evolution of a Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2015, 77, p 41–49

    Article  CAS  Google Scholar 

  11. M. Aghaie-Khafri and N. Golarzi, Forming Behavior and Workability of Hastelloy X Superalloy During Hot Deformation, Mater. Sci. Eng. A, 2008, 486(1–2), p 641–647

    Article  Google Scholar 

  12. F. Tancret, E. Galindo-Nava, and P.E.J. Rivera Díaz-del-Castillo, Dynamic Recrystallisation Model in Precipitation-Hardened Superalloys as a Tool for the Joint Design of Alloys and Forming Processes, Mater. Des., 2016, 103, p 293–299

    Article  CAS  Google Scholar 

  13. D.-X. Wen, Y.C. Lin, and Y. Zhou, A New Dynamic Recrystallization Kinetics Model for a Nb Containing Ni-Fe-Cr-base Superalloy Considering Influences of Initial Phase, Vacuum, 2017, 141, p 316–327

    Article  CAS  Google Scholar 

  14. Y.-X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99

    Article  CAS  Google Scholar 

  15. D.-D. Chen, Y.C. Lin, Y. Zhou, M.-S. Chen, and D.-X. Wen, Dislocation Substructures Evolution and an Adaptive-Network-Based Fuzzy Inference System Model for Constitutive Behavior of a Ni-Based Superalloy During Hot Deformation, J. Alloy. Compd., 2017, 708, p 938–946

    Article  CAS  Google Scholar 

  16. N. Wanderka, A. Bakai, C. Abromeit, D. Isheim, and D.N. Seidman, Effects of 10 MeV Electron Irradiation at High Temperature of a Ni-Mo-Based Hastelloy, Ultramicroscopy, 2007, 107(9), p 786–790

    Article  CAS  Google Scholar 

  17. Y.Q. Guo, D.J. Wu, G.Y. Ma, and D.M. Guo, Trailing Heat Sink Effects on Residual Stress and Distortion of Pulsed Laser Welded Hastelloy C-276 Thin Sheets, J. Mater. Process. Technol., 2014, 214(12), p 2891–2899

    Article  CAS  Google Scholar 

  18. R. Li, C. Zhang, L. Zhang, Y. Cui, and W. Shen, Expanding the Applicable Duration for Shrink Fitting of the Ultrathin-Walled Reactor Coolant Pump Rotor-Can, Ann. Nucl. Energy, 2017, 110, p 1217–1223

    Article  CAS  Google Scholar 

  19. V. Randle, Twinning-Related Grain Boundary Engineering, Acta Mater., 2004, 52(14), p 4067–4081

    Article  CAS  Google Scholar 

  20. H. Akhiani, M. Nezakat, M. Sanayei, and J. Szpunar, The Effect of Thermo-Mechanical Processing on Grain Boundary Character Distribution in Incoloy 800H/HT, Mater. Sci. Eng. A, 2015, 626, p 51–60

    Article  CAS  Google Scholar 

  21. K. Deepak, S. Mandal, C.N. Athreya, D.-I. Kim, B. de Boer, and V. Subramanya Sarma, Implication of Grain Boundary Engineering on High Temperature Hot Corrosion of Alloy 617, Corros. Sci., 2016, 106, p 293–297

    Article  CAS  Google Scholar 

  22. W. Cao, S. Xia, Q. Bai, W. Zhang, B. Zhou, Z. Li, and L. Jiang, Effects of Initial Microstructure on the Grain Boundary Network During Grain Boundary Engineering in Hastelloy N Alloy, J. Alloy. Compd., 2017, 704, p 724–733

    Article  CAS  Google Scholar 

  23. Y. Cao, H. Di, and G. Huang, On the Grain Boundary Character Distribution of Incoloy 800H During Dynamic Recrystallization, J. Nucl. Mater., 2017, 486, p 21–25

    Article  CAS  Google Scholar 

  24. Y. Kong, P. Chang, Q. Li, L. Xie, and S. Zhu, Hot Deformation Characteristics and Processing Map of Nickel-Based C276 Superalloy, J. Alloy. Compd., 2015, 622, p 738–744

    Article  CAS  Google Scholar 

  25. C. Zhang, L. Zhang, W. Shen, Q. Xu, and Y. Cui, The Processing Map and Microstructure Evolution of Ni-Cr-Mo-Based C276 Superalloy During Hot Compression, J. Alloy. Compd., 2017, 728, p 1269–1278

    Article  CAS  Google Scholar 

  26. Z. Chi, Z. Liwen, S. Wenfei, L. Mengfei, and G. Sendong, Characterization of Hot Deformation Behavior of Hastelloy C-276 Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2015, 24(1), p 149–157

    Article  Google Scholar 

  27. Z. Chi, Z. Liwen, S. Wenfei, L. Cuiru, and G. Sendong, The Kinetics of Metadynamic Recrystallization in a Ni-Cr-Mo-Based Superalloy Hastelloy C-276, J. Mater. Eng. Perform., 2016, 25(2), p 545–552

    Article  Google Scholar 

  28. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    Article  CAS  Google Scholar 

  29. X. Tang, B. Wang, H. Ji, X. Fu, and W. Xiao, Behavior and Modeling of Microstructure Evolution During Metadynamic Recrystallization of a Ni-Based Superalloy, Mater. Sci. Eng. A, 2016, 675, p 192–203

    Article  CAS  Google Scholar 

  30. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Superalloy, Mater. Sci. Eng. A, 2000, 293(1–2), p 198–207

    Article  Google Scholar 

  31. D.-G. He, Y.C. Lin, M.-S. Chen, and L. Li, Kinetics Equations and Microstructural Evolution During Metadynamic Recrystallization in a Nickel-Based Superalloy with δ Phase, J. Alloy. Compd., 2017, 690, p 971–978

    Article  CAS  Google Scholar 

  32. Y. Cheng, H. Du, Y. Wei, L. Hou, and B. Liu, Metadynamic Recrystallization Behavior and Workability Characteristics Of HR3C Austenitic Heat-Resistant Stainless Steel with Processing Map, J. Mater. Process. Technol., 2016, 235, p 134–142

    Article  CAS  Google Scholar 

  33. P. Mukhopadhyay, M. Loeck, and G. Gottstein, A Cellular Operator Model for the Simulation of Static Recrystallization, Acta Mater., 2007, 55(2), p 551–564

    Article  CAS  Google Scholar 

  34. Y.G. Liu, J. Liu, M.Q. Li, and H. Lin, The Study on Kinetics of Static Recrystallization in the Two-Stage Isothermal Compression of 300M Steel, Comput. Mater. Sci., 2014, 84, p 115–121

    Article  CAS  Google Scholar 

  35. A.M. Elwazri, P. Wanjara, and S. Yue, Metadynamic and Static Recrystallization of Hypereutectoid Steel, ISIJ Int., 2003, 43(7), p 1080–1088

    Article  CAS  Google Scholar 

  36. Y.C. Lin, Y.-X. Liu, M.-S. Chen, M.-H. Huang, X. Ma, and Z.-L. Long, Study of Static Recrystallization Behavior in Hot Deformed Ni-Based Superalloy Using Cellular Automaton Model, Mater. Des., 2016, 99, p 107–114

    Article  CAS  Google Scholar 

  37. A. Laasraoui and J.J. Jonas, Recrystallization of Austenite After Deformation at High Temperatures and Strain Rates—Analysis and Modeling, Metall. Trans. A, 1991, 22A(1), p 151–160

    Article  CAS  Google Scholar 

  38. A.M. Elwazri, E. Essadiqi, and S. Yue, Kinetics of Metadynamic Recrystallization in Microalloyed Hypereutectoid Steels, ISIJ Int., 2004, 44(4), p 744–752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51604058), the Major State Basic Research Development Program of China (973 program) (No. 2015cb057305), the Fundamental Research Funds for the Central Universities of China, the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, L., Cui, Y. et al. Characterization of Static Recrystallization of a Ni-Cr-Mo-Based C276 Superalloy in Two-Stage Isothermal Compression. J. of Materi Eng and Perform 27, 6426–6434 (2018). https://doi.org/10.1007/s11665-018-3761-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3761-4

Keywords

Navigation