Skip to main content
Log in

Microstructure and Mechanical Properties of Friction Stir Welded Q235 Low-Carbon Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Three-millimeter-thick Q235 steel plates were friction stir welded using a tool made of tungsten-rhenium alloy in the present study. The microstructure and mechanical properties of welded joints at various traverse speeds from 50 to 150 mm/min were analyzed. It was demonstrated that traverse speed had great impacts on microstructure and mechanical properties of the joints. Phase transformation accompanied with recrystallization occurred during FSW process which resulted in different microstructures in the WNZ, and the grain size in other zones was significantly affected by traverse speed. The highest hardness was located in the nugget zone, while the lowest hardness was found in the heat-affected zone. The transverse tensile test suggested that all the joints showed slightly lower tensile strength than that of the base material, and the tensile strength increased with increasing traverse speed. All the joints fractured in the heat-affected zone with ductile fracture mode. The impact test showed that the impact toughness decreased with the increasing traverse speed and the impact fracture surface could be divided into shear lip zone and fibrous zone which showed a typical ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, and C.O. Pettersson, Microstructure and Mechanical Properties of Friction Stir Welded SAF 2507 Super Duplex Stainless Steel, Mater. Sci. Eng. A, 2005, 397(1–2), p 376–384

    Article  Google Scholar 

  2. H.H. Cho, H.N. Han, S.T. Hong, J.H. Park, and Y.J. Kwon, Microstructural Analysis of Friction Stir Welded Ferritic Stainless Steel, Mater. Sci. Eng. A, 2011, 528(6), p 2889–2894

    Article  Google Scholar 

  3. R.S. Mishra, Z.Y. Ma, Y. Sato, Y. Hovanski, and R. Verma, Friction Stir Welding and Processing VII, Mater. Sci. Eng. R, 2005, 50(1), p 1–78

    Article  Google Scholar 

  4. Y.S. Sato, H. Yamanoi, H. Kokawa, and T. Furuhara, Microstructural Evolution of Ultrahigh Carbon Steel During Friction Stir Welding, Scr. Mater., 2007, 57(6), p 557–560

    Article  CAS  Google Scholar 

  5. R. Ramesh, I. Dinaharan, R. Kumar, and E.T. Akinlabi, Microstructure and Mechanical Characterization of Friction Stir Welded High Strength Low Alloy Steels, Mater. Sci. Eng. A, 2017, 687, p 39–46

    Article  CAS  Google Scholar 

  6. S.H.C. Park, Y.S. Sato, and H. Kokawa, Microstructural Evolution and Its Effect on Hall–Petch Relationship in Friction Stir Welding of Thixomolded Mg Alloy AZ91D, J. Mater. Sci., 2003, 38(21), p 4379–4383

    Article  CAS  Google Scholar 

  7. J. Teimurnezhad, H. Pashazadeh, and A. Masumi, Effect of Shoulder Plunge Depth on the Weld Morphology, Macrograph and Microstructure of Copper FSW Joints, J. Manuf. Process., 2016, 22, p 254–259

    Article  Google Scholar 

  8. S. Mironov, Y. Zhang, Y.S. Sato, and H. Kokawa, Crystallography of Transformed β Microstructure in Friction Stir Welded Ti–6Al–4V Alloy, Scr. Mater., 2008, 59(5), p 511–514

    Article  CAS  Google Scholar 

  9. A. Scialpi, M.D. Giorgi, L.A.C.D. Filippis, R. Nobile, and F.W. Panella, Mechanical Analysis of Ultra-Thin Friction Stir Welding Joined Sheets with Dissimilar and Similar Materials, Mater. Des., 2008, 29(5), p 928–936

    Article  CAS  Google Scholar 

  10. P. Carlone, A. Astarita, G.S. Palazzo, V. Paradiso, and A. Squillace, Microstructural Aspects in Al–Cu Dissimilar Joining by FSW, Int. J. Adv. Manuf. Technol., 2015, 79(5–8), p 1109–1116

    Article  Google Scholar 

  11. A. De, H.K.D.H. Bhadeshia, and T. Debroy, Friction Stir Welding of Mild Steel: Tool Durability and Steel Microstructure, Mater. Sci. Technol., 2014, 30(9), p 1050–1056

    Article  CAS  Google Scholar 

  12. Y. Sun, H. Fujii, H. Imai, and K. Kondoh, Suppression of Hydrogen-Induced Damage in Friction Stir Welded Low Carbon Steel Joints, Corros. Sci., 2015, 94, p 88–98

    Article  CAS  Google Scholar 

  13. Y. Azuma, Y. Kameno, and T. Takasugi, Friction Stir Welding in Stainless Steel Sheet of Type 430 Using Ni-Based Dual Two-Phase Intermetallic Alloy Tool, Weld. Int., 2013, 27(12), p 929–935

    Article  Google Scholar 

  14. W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of Friction Stir Welding Steel, Sci. Technol. Weld. Join., 1999, 4(6), p 365–372

    Article  CAS  Google Scholar 

  15. H. Fujii, L. Cui, N. Tsuji, M. Maeda, and K. Nakata, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng. A, 2006, 429(1), p 50–57

    Article  Google Scholar 

  16. L. Cui, H. Fujii, N. Tsuji, K. Nakata, and K. Nogi, Transformation in Stir Zone of Friction Stir Welded Carbon Steels with Different Carbon Contents, ISIJ Int., 2007, 47(2), p 299–306

    Article  CAS  Google Scholar 

  17. H. Fujii, L. Cui, K. Nakata, and K. Nogi, Mechanical Properties of Friction Stir Welded Carbon Steel Joints—Friction Stir Welding With and Without Transformation, Weld. World, 2013, 52(9–10), p 75–81

    Google Scholar 

  18. M. Ghosh, M. Hussain, and G.R. Kumar, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Plain Carbon Steel, ISIJ Int., 2012, 52(3), p 477–482

    Article  CAS  Google Scholar 

  19. T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction Stir Welding Studies on Mild Steel—Process Results, Microstructures, and Mechanical Properties are Reported, Weld. J., 2003, 82(1), p 1S–9S

    Article  Google Scholar 

  20. S. Karami, H. Jafarian, A.R. Eivani, and S. Kheirandish, Engineering Tensile Properties by Controlling Welding Parameters and Microstructure in a Mild Steel Processed by Friction Stir Welding, Mater. Sci. Eng. A, 2016, 670, p 68–74

    Article  CAS  Google Scholar 

  21. R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 55(3), p 883–895

    Article  CAS  Google Scholar 

  22. D. Micallef, D. Camilleri, A. Toumpis, A. Galloway, and L. Arbaoui, Local Heat Generation and Material Flow in Friction Stir Welding of Mild Steel Assemblies, Proc. Inst. Mech. Eng. L J. Mater., 2016, 230(2), p 586–602

    CAS  Google Scholar 

  23. A.K. Lakshminarayanan and V. Balasubramanian, Tensile and Impact Toughness Properties of Gas Tungsten Arc Welded and Friction Stir Welded Interstitial Free Steel Joints, J. Mater. Eng. Perform., 2011, 20(1), p 82–89

    Article  CAS  Google Scholar 

  24. H. Li, S. Yang, S. Zhang, B. Zhang, and Z. Jiang, Microstructure Evolution and Mechanical Properties of Friction Stir Welding Super-Austenitic Stainless Steel S32654, Mater. Des., 2017, 118, p 207–217

    Article  CAS  Google Scholar 

  25. M.H. Razmpoosh, A. Zarei-Hanzaki, and A. Imandoust, Effect of the Zener–Hollomon Parameter on the Microstructure Evolution of Dual Phase TWIP Steel Subjected to Friction Stir Processing, Mater. Sci. Eng. A, 2015, 638, p 15–19

    Article  CAS  Google Scholar 

  26. P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, and D. Wang, Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel, Mater. Sci. Eng. A, 2013, 575(28), p 30–34

    Article  CAS  Google Scholar 

  27. D.M. Sekban, S.M. Aktarer, and P. Xue, Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding, Mater. Sci. Eng. A, 2016, 672, p 40–48

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was sponsored by the Natural Science Foundation of Shandong Province, China (No. ZR2016EEM43) and Key Research & Development Program in Shandong Province (No. 2017CXGC0811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhou or Y. X. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, R.X., Yang, H.F. et al. Microstructure and Mechanical Properties of Friction Stir Welded Q235 Low-Carbon Steel. J. of Materi Eng and Perform 27, 6709–6718 (2018). https://doi.org/10.1007/s11665-018-3747-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3747-2

Keywords

Navigation