Skip to main content
Log in

Synthesis and Structural Characterization of Sb-Doped TiFe2Sn Heusler Compounds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ternary Heusler compounds form a numerous class of intermetallics, which include two families with general compositions ABC and AB2C, usually referred to as half- and full-Heusler compounds, respectively. Given their tunable electronic properties, made possible by adjusting the chemical composition, these materials are currently considered for the possible use in sustainable technologies such as solar energy and thermoelectric conversion. According to theoretical predictions, Sb substitution in the TiFe2Sn full-Heusler compound is thought to yield band structure modifications that should enhance the thermoelectric power factor. In this work, we tested the phase stability and the structural and microstructural properties of such heavily doped compounds. We synthesized polycrystalline TiFe2Sn1−xSbx samples, with x = 0, 0.1, 0.2 and 1.0 by arc melting, followed by an annealing treatment. The structural characterization, performed by x-ray powder diffraction and microscopy analyses, confirmed the formation of the pseudo-ternary Heusler structure (cF16, Fm-3m, prototype: MnCu2Al) in all samples, with only few percent amounts of secondary phases and only slight deviations from nominal stoichiometry. With increasing Sb substitution, we found a steady decrease in the lattice parameter, confirming that the replacement takes place at the Sn site. Quite unusually, the as-cast samples exhibited a higher lattice contraction than the annealed ones. The fully substituted x = 1.0 compound, again adopting the MnCu2Al structure, does not form as stoichiometric phase and turned out to be strongly Fe deficient. The physical behavior at room temperature indicated that annealing with increasing temperature is beneficial for electrical and thermoelectrical transport. Moreover, we measured a slight improvement in electrical and thermoelectrical properties in the x = 0.1 sample and a suppression in the x = 0.2 sample, as compared to the undoped x = 0 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Villars and K. Cenzual, Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds, Release 2017/18, ASM International, Materials Park, Ohio, USA

  2. T. Graf, C. Felser, and S.S.P. Parkin, Simple Rules for the Understanding of Heusler Compounds, Progr. Solid State Chem., 2011, 39, p 1–50

    Article  CAS  Google Scholar 

  3. U. Eberz, W. Seelentag, and H.U. Schuster, Zur Kenntnis farbiger ternärer und quaternärer Zintl-Phasen, Z. Naturfosch. B, 1980, 35, p 1341–1343

    Article  Google Scholar 

  4. C.S. Lue and Y.-K. Kuo, Thermal and Transport Properties of the Heusler-Type Compounds Fe2−xTi1+xSn, J. Appl. Phys., 2004, 96, p 2681

    Article  CAS  Google Scholar 

  5. A. Slebarski, J. Deniszczyk, W. Borgieł, A. Jezierski, M. Swatek, A. Winiarska, M.B. Maple, and W.M. Yuhasz, Electronic Structure and Thermodynamic Properties of the Heusler Alloys Fe2Ti1−xVxSn, Phys. Rev. B, 2004, 69, p 155118

    Article  Google Scholar 

  6. A. Slebarski, A. Wrona, T. Zawada, A. Jezierski, A. Zygmunt, K. Szot, S. Chiuzbaian, and M. Neumann, Electronic Structure of Some Heusler Alloys Based on Aluminum and Tin, Phys. Rev. B, 2002, 65, p 144430

    Article  Google Scholar 

  7. M. Nakabayashi, K. Fukuda, H. Kitagawa, Y. Yamada, S. Kubo, and A. Matsushita, Magnetic and Transport Properties in Heusler-Type Fe2TiSn Compound, Phys. B, 2003, 329–333, p 1134–1135

    Article  Google Scholar 

  8. M.L.C. Buffon, G. Laurita, L. Lamontagne, E.E. Levin, S. Mooraj, D.L. Lloyd, N. White, T.M. Pollock, and R. Seshadri, Thermoelectric Performance and the Role of Anti-site Disorder in the 24-Electron Heusler TiFe2Sn, J. Phys.: Condens. Matter, 2017, 29, p 405702

    Google Scholar 

  9. Y.G. Yu, X. Zhang, and A. Zunger, Natural Off-Stoichiometry Causes Carrier Doping in Half-Heusler Filled Tetrahedral Structures, Phys. Rev. B, 2017, 95, p 085201

    Article  Google Scholar 

  10. V. Popescu, P. Kratzer, S. Wimmer, and H. Ebert, Native Defects in the Co2TiZ (Z = Si, Ge, Sn) Full Heusler Alloys: Formation and Influence on the Thermoelectric Properties, Phys. Rev. B, 2017, 96, p 054443

    Article  Google Scholar 

  11. D.I. Bilc, G. Hautier, D. Waroquiers, G.-M. Rignanese, and P. Ghosez, Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States, Phys. Rev. Lett., 2015, 114, p 136601–136605

    Article  Google Scholar 

  12. J. Rodriguez-Carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Phys. B, 1993, 192, p 55–69

    Article  CAS  Google Scholar 

  13. M. Yin, P. Nash, J.A. Kaduk, and J.C. Schuster, Experimental Investigation of the Fe-Sn-Ti Ternary Phase Diagram at 873 K, J. Alloys Compd., 2017, 693, p 76–86

    Article  CAS  Google Scholar 

  14. I. Pallecchi, M. Pani, F. Ricci, S. Lemal, D.I. Bilc, P. Ghosez, C. Bernini, N. Ardoino, G. Lamura and D. Marré, Thermoelectric Properties of Chemically Substituted Full-Heusler Fe2TiSn1−xSbx (x = 0, 0.1 and 0.2) compounds. Phys. Rev. Mater., 2018, 2, p 075403

    Article  Google Scholar 

  15. S. Chaudhuri, P.A. Bhobe, and A.K. Nigam, Possible Half-Metallicity and Variable Range Hopping Transport in Sb-Substituted Fe2TiSn Heusler Alloys, J. Phys. Condens. Matter, 2018, 30, p 015703

    Article  CAS  Google Scholar 

  16. E.T. Teatum, K.A. Gschneidner Jr. and J.T. Weber, Compilation of Calculated Data Useful in Predicting Metallurgical Behavior of Elements in Binary Alloys Systems. Los Alamos Scientific Laboratory Report LA-4003, UC-25 Metals, Ceramics and Materials TID-4500 (1968)

  17. P.V. Villars and J.L. Daams, Atomic-Environment Classification of the Chemical Elements, J. Alloys Compd., 1993, 197, p 177–196

    Article  CAS  Google Scholar 

  18. K.A. Gschneidner, Jr., Physical Properties and Interrelationships of Metallic and Semimetallic Elements, Solid State Phys., 1964, 16, p 275

    Article  CAS  Google Scholar 

  19. S. Maiti and W. Steurer, Structural-Disorder and Its Effect on Mechanical Properties in Single-Phase TaNbHfZr High-Entropy Alloy, Acta Mater., 2016, 106, p 87–97

    Article  CAS  Google Scholar 

  20. L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, and T. Li, Annealing Effects on the Microstructure and Properties of Bulk High-Entropy CoCrFeNiTi0.5 Alloy Casting Ingot, Intermetallics, 2014, 44, p 37–43

    Article  Google Scholar 

  21. N. Naghibolashrafi, S. Keshavarz, Vinay I. Hegde, A. Gupta, W.H. Butler, J. Romero, K. Munira, P. LeClair, D. Mazumdar, J. Ma, A.W. Ghosh, and C. Wolverton, Synthesis and Characterization of Fe-Ti-Sb Intermetallic Compounds: Discovery of a New Slater-Pauling Phase, Phys. Rev. B, 2016, 93, p 104424

    Article  Google Scholar 

  22. G. Melnyk and W. Tremel, The Titanium-Iron-Antimony Ternary System and the Crystal and Electronic Structure of the Interstitial Compound Ti5FeSb2, J. Alloys Compd., 2003, 349, p 164–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pani, M., Pallecchi, I., Bernini, C. et al. Synthesis and Structural Characterization of Sb-Doped TiFe2Sn Heusler Compounds. J. of Materi Eng and Perform 27, 6314–6321 (2018). https://doi.org/10.1007/s11665-018-3744-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3744-5

Keywords

Navigation